$${\mathcal {H}}$$H-matrix Accelerated Second Moment Analysis for Potentials with Rough Correlation

We consider the efficient solution of partial differential equations for strongly elliptic operators with constant coefficients and stochastic Dirichlet data by the boundary integral equation method. The computation of the solution’s two-point correlation is well understood if the two-point correlation of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem becomes much more involved in case of roughly correlated data. We will show that the concept of the $${\mathcal {H}}$$H-matrix arithmetic provides a powerful tool to cope with this problem. By employing a parametric surface representation, we end up with an $${\mathcal {H}}$$H-matrix arithmetic based on balanced cluster trees. This considerably simplifies the implementation and improves the performance of the $${\mathcal {H}}$$H-matrix arithmetic. Numerical experiments are provided to validate and quantify the presented methods and algorithms.

[1]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[2]  Helmut Harbrecht,et al.  Combination technique based k-th moment analysis of elliptic problems with random diffusion , 2013, J. Comput. Phys..

[3]  Reinhold Schneider,et al.  Multilevel frames for sparse tensor product spaces , 2008, Numerische Mathematik.

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[6]  Daniel M. Tartakovsky,et al.  Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..

[7]  Michael Griebel,et al.  On the Convergence of the Combination Technique , 2014 .

[8]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[9]  Michael Griebel,et al.  On the construction of sparse tensor product spaces , 2012, Math. Comput..

[10]  Boris N. Khoromskij,et al.  Approximate iterations for structured matrices , 2008, Numerische Mathematik.

[11]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[12]  Helmut Harbrecht,et al.  A finite element method for elliptic problems with stochastic input data , 2010 .

[13]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[14]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[15]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[16]  P. Protter Stochastic integration and differential equations , 1990 .

[17]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[18]  I. Babuska,et al.  Solution of stochastic partial differential equations using Galerkin finite element techniques , 2001 .

[19]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[20]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[21]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[22]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[23]  M. Griebel,et al.  Optimized Tensor-Product Approximation Spaces , 2000 .

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  G. Schulz Iterative Berechung der reziproken Matrix , 1933 .

[26]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[27]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[28]  M. Lemaire,et al.  Stochastic Finite Elements , 2010 .

[29]  Helmut Harbrecht,et al.  Comparison of fast boundary element methods on parametric surfaces , 2013 .

[30]  Cleve B. Moler,et al.  Iterative Refinement in Floating Point , 1967, JACM.

[31]  P. Goldbart,et al.  Linear differential operators , 1967 .

[32]  Reinhold Schneider,et al.  Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.

[33]  W. Hackbusch,et al.  A sparse H -matrix arithmetic: general complexity estimates , 2000 .

[34]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[35]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[36]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[37]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[38]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[39]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2010, SIAM Rev..

[40]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..