Impaired interaction between the slide helix and the C-terminus of Kir2.1: a novel mechanism of Andersen syndrome.

[1]  S. Choe,et al.  Andersen's syndrome mutation effects on the structure and assembly of the cytoplasmic domains of Kir2.1. , 2006, Biochemistry.

[2]  Carlos G Vanoye,et al.  Trafficking‐competent and trafficking‐defective KCNJ2 mutations in Andersen syndrome , 2006, Human mutation.

[3]  P. Hutter,et al.  Distinct patterns of germ‐line deletions in MLH1 and MSH2: the implication of Alu repetitive element in the genetic etiology of Lynch syndrome (HNPCC) , 2006, Human mutation.

[4]  Colin G. Nichols,et al.  KATP channels as molecular sensors of cellular metabolism , 2006, Nature.

[5]  M. Tristani-Firouzi,et al.  Andersen‐Tawil syndrome: Prospective cohort analysis and expansion of the phenotype , 2006, American journal of medical genetics. Part A.

[6]  A. Karschin,et al.  The Retention Factor p11 Confers an Endoplasmic Reticulum‐Localization Signal to the Potassium Channel TASK‐1 , 2006, Traffic.

[7]  C. January,et al.  HERG trafficking and pharmacological rescue of LQTS-2 mutant channels. , 2006, Handbook of experimental pharmacology.

[8]  F. Lehmann-Horn,et al.  Andersen–Tawil syndrome , 2005, Neurology.

[9]  L. Schild,et al.  Loss-of-function mutations of the K(+) channel gene KCNJ2 constitute a rare cause of long QT syndrome. , 2004, Journal of molecular and cellular cardiology.

[10]  Martin Tristani-Firouzi,et al.  Defective Potassium Channel Kir2.1 Trafficking Underlies Andersen-Tawil Syndrome* , 2003, Journal of Biological Chemistry.

[11]  M. Konrad,et al.  Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. , 2003, Kidney international.

[12]  U. Hoppe,et al.  Andersen mutations of KCNJ2 suppress the native inward rectifier current IK1 in a dominant-negative fashion. , 2003, Cardiovascular research.

[13]  F. Ashcroft,et al.  Crystal Structure of the Potassium Channel KirBac1.1 in the Closed State , 2003, Science.

[14]  E. Behr,et al.  PIP2 binding residues of Kir2.1 are common targets of mutations causing Andersen syndrome , 2003, Neurology.

[15]  P. Ledaal,et al.  These include: , 1993 .

[16]  U. Hoppe,et al.  A ndersen mutations of KCNJ 2 suppress the native inward rectifier current I in a dominant-negative fashionK , 2003 .

[17]  保坂 幸男 Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen's syndrome , 2003 .

[18]  Stanley Nattel,et al.  Kir2.4 and Kir2.1 K+ channel subunits co‐assemble: a potential new contributor to inward rectifier current heterogeneity , 2002, Journal of Physiology.

[19]  Carlos G Vanoye,et al.  KCNJ2 mutation results in Andersen syndrome with sex-specific cardiac and skeletal muscle phenotypes. , 2002, American journal of human genetics.

[20]  Hubert Kwiecinski,et al.  Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). , 2002, The Journal of clinical investigation.

[21]  Jian Yang,et al.  Alterations in Conserved Kir Channel-PIP2 Interactions Underlie Channelopathies , 2002, Neuron.

[22]  M. Horie,et al.  Novel KCNJ2 Mutation in Familial Periodic Paralysis With Ventricular Dysrhythmia , 2002, Circulation.

[23]  Christian Derst,et al.  Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Martin S. Taylor,et al.  The severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics. , 2002, Human molecular genetics.

[25]  S. Subramony,et al.  Mutations in Kir2.1 Cause the Developmental and Episodic Electrical Phenotypes of Andersen's Syndrome , 2001, Cell.

[26]  S. Heinemann,et al.  Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels , 2001, FEBS letters.

[27]  Mark T. Nelson,et al.  Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K(+) current in K(+)-mediated vasodilation. , 2000, Circulation research.

[28]  S. Canún,et al.  Andersen syndrome autosomal dominant in three generations. , 1999, American journal of medical genetics.

[29]  M. Konrad,et al.  Prenatal and postnatal management of hyperprostaglandin E syndrome after genetic diagnosis from amniocytes. , 1999, Pediatrics.

[30]  Y. Jan,et al.  A New ER Trafficking Signal Regulates the Subunit Stoichiometry of Plasma Membrane KATP Channels , 1999, Neuron.

[31]  R. Griggs,et al.  Andersen's syndrome: A distinct periodic paralysis , 1997, Annals of neurology.

[32]  C. Nichols,et al.  Inward rectifier potassium channels. , 1997, Annual review of physiology.

[33]  Y. Jan,et al.  Regions Responsible for the Assembly of Inwardly Rectifying Potassium Channels , 1996, Cell.

[34]  M. Lazdunski,et al.  Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+ channel proteins via their N‐terminal end , 1996, FEBS letters.

[35]  M. Macek,et al.  Missense mutation (G480C) in the CFTR gene associated with protein mislocalization but normal chloride channel activity. , 1995, Human molecular genetics.

[36]  Rabi Tawil,et al.  Andersen's syndrome: Potassium‐sensitive periodic paralysis, ventricular ectopy, and dysmorphic features , 1994, Annals of neurology.

[37]  Y. Kurachi,et al.  Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain , 1993, FEBS letters.

[38]  Yoshihiro Kubo,et al.  Primary structure and functional expression of a mouse inward rectifier potassium channel , 1993, Nature.

[39]  P. Krasilnikoff,et al.  INTERMITTENT MUSCULAR WEAKNESS, EXTRASYSTOLES, AND MULTIPLE DEVELOPMENTAL ANOMALIES , 1971, Acta paediatrica Scandinavica.

[40]  D. Garcia-Dorado,et al.  Cardiovascular Research , 1966 .