A simple method for Ce-Nd separation using nano-NaBiO3: Application in the isotopic analysis of U, Sr, Pb, Nd, and Hf in uranium ores.

[1]  F. Liu,et al.  Single-Stage Extraction Technique for Ce Stable Isotopes and Measurement by MC-ICP-MS. , 2021, Analytical chemistry.

[2]  M. D. Straub,et al.  Recent Advances in Nuclear Forensic Chemistry. , 2020, Analytical chemistry.

[3]  Zhaochu Hu,et al.  Estimation of Isotopic Reference Values for Pure Materials and Geological Reference Materials , 2020 .

[4]  Wen Zhang,et al.  Iso-Compass: new freeware software for isotopic data reduction of LA-MC-ICP-MS , 2020 .

[5]  Lei Xie,et al.  Cerium separation with NaBiO3 nanoflower material via an oxidation adsorption strategy , 2020 .

[6]  Chao Huang,et al.  High‐Precision Sr‐Nd‐Hf‐Pb Isotopic Composition of Chinese Geological Standard Glass Reference Materials CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5 by MC‐ICP‐MS and TIMS , 2020, Geostandards and Geoanalytical Research.

[7]  Tao Yang,et al.  A simple two-stage column chromatographic separation scheme for Sr, Pb, Nd, and Hf isotope analyses in geological samples by thermal ionization mass spectrometry or multi-collector inductively coupled plasma mass spectrometry. , 2019, Journal of separation science.

[8]  Honglin Yuan,et al.  Determination of Hf–Sr–Nd isotopic ratios by MC-ICP-MS using rapid acid digestion after flux-free fusion in geological materials , 2018, Acta Geochimica.

[9]  R. Carlson,et al.  Factors influencing the precision and accuracy of Nd isotope measurements by thermal ionization mass spectrometry , 2018 .

[10]  J. K. Dash,et al.  Role of fractionation correction in accurate determination of 142Nd/144Nd by TIMS: A case study of 1.48 Ga alkaline rocks from Khariar, India , 2017 .

[11]  F. Stuart,et al.  142Nd/144Nd Inferences on the nature and origin of the source of high 3He/4He magmas , 2017 .

[12]  Y. Yue,et al.  A new method for the separation of LREEs in geological materials using a single TODGA resin column and its application to the determination of Nd isotope compositions by MC-ICPMS , 2017 .

[13]  C. Pin,et al.  Integrated Extraction Chromatographic Separation of the Lithophile Elements Involved in Long-Lived Radiogenic Isotope Systems (Rb-Sr, U-Th-Pb, Sm-Nd, La-Ce, and Lu-Hf) Useful in Geochemical and Environmental Sciences. , 2017, Analytical chemistry.

[14]  T. Yokoyama,et al.  Chemical separation of Nd from geological samples for chronological studies using (146)Sm-(142)Nd and (147)Sm-(143)Nd systematics. , 2016, Analytica chimica acta.

[15]  Ian D. Hutcheon,et al.  Nuclear Forensic Science: Analysis of Nuclear Material Out of Regulatory Control , 2016 .

[16]  T. Nakano,et al.  Potential uses of stable isotope ratios of Sr, Nd, and Pb in geological materials for environmental studies , 2016, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[17]  Yue-heng Yang,et al.  Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios , 2016 .

[18]  Xuan‐Ce Wang,et al.  Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry , 2016 .

[19]  Heqing Tang,et al.  Visible-light photocatalytic degradation of bisphenol A on NaBiO3 nanosheets in a wide pH range: A synergistic effect between photocatalytic oxidation and chemical oxidation , 2016 .

[20]  R. Sudowe,et al.  Separation of Americium in High Oxidation States from Curium Utilizing Sodium Bismuthate. , 2016, Analytical chemistry.

[21]  L. Pfister,et al.  Origin and Dynamics of Rare Earth Elements during Flood Events in Contaminated River Basins: Sr-Nd-Pb Isotopic Evidence. , 2016, Environmental science & technology.

[22]  S. Aggarwal Thermal ionisation mass spectrometry (TIMS) in nuclear science and technology – a review , 2016 .

[23]  P. Sprung,et al.  A rapid and efficient ion-exchange chromatography for Lu–Hf, Sm–Nd, and Rb–Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS , 2015 .

[24]  N. Dauphas,et al.  Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia , 2015 .

[25]  S. Boulyga,et al.  Mass spectrometric analysis for nuclear safeguards , 2015 .

[26]  Yue-heng Yang,et al.  A rapid single column separation scheme for high-precision Sr–Nd–Pb isotopic analysis in geological samples using thermal ionization mass spectrometry , 2015 .

[27]  You-Lian Li,et al.  Ce–Nd separation by solid-phase micro-extraction and its application to high-precision 142Nd/144Nd measurements using TIMS in geological materials , 2015 .

[28]  M. Wallenius,et al.  Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates. , 2014, Talanta.

[29]  Yue-heng Yang,et al.  Single-step separation scheme and high-precision isotopic ratios analysis of Sr–Nd–Hf in silicate materials , 2014 .

[30]  Lijun Cheng,et al.  Synthesis of NaBiO3/Bi2O3 heterojunction-structured photocatalyst and its photocatalytic mechanism , 2014 .

[31]  J. Blichert‐Toft,et al.  The elusive Hadean enriched reservoir revealed by 142Nd deficits in Isua Archaean rocks , 2012, Nature.

[32]  Xian‐Hua Li,et al.  Directly determining 143Nd/144Nd isotope ratios using thermal ionization mass spectrometry for geological samples without separation of Sm–Nd , 2011 .

[33]  P. Andersson,et al.  Determination of Nd isotopes in water: a chemical separation technique for extracting Nd from seawater using a chelating resin. , 2011, Analytical chemistry.

[34]  Klaus Mayer,et al.  Determination of rare-earth elements in uranium-bearing materials by inductively coupled plasma mass spectrometry. , 2010, Talanta.

[35]  Ian D. Hutcheon,et al.  Natural variations in uranium isotope ratios of uranium ore concentrates: Understanding the 238U/235U fractionation mechanism , 2010 .

[36]  Yue-heng Yang,et al.  Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS , 2010 .

[37]  Klaus Mayer,et al.  Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates. , 2009, Analytical chemistry.

[38]  B. Mincher,et al.  Tributylphosphate extraction behavior of bismuthate-oxidized americium. , 2008, Inorganic chemistry.

[39]  E. Boyle,et al.  Natural fractionation of 238U/235U , 2008 .

[40]  F. Grousset,et al.  Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes , 2005 .

[41]  R. Carlson,et al.  142Nd Evidence for Early (>4.53 Ga) Global Differentiation of the Silicate Earth , 2005, Science.

[42]  K. Mezger,et al.  Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC‐ICPMS measurements , 2001 .

[43]  M. Noroozifar,et al.  Solid-phase sodium bismuthate as an oxidant in flow injection analysis: determination of manganese in effluent streams , 2000 .

[44]  M. McCulloch,et al.  A SEARCH FOR FOSSIL NUCLEAR REACTORS IN THE ALLIGATOR RIVER URANIUM FIELD,AUSTRALIA : CONSTRAINTS FROM SM, GD AND ND ISOTOPIC STUDIES , 1990 .

[45]  T. Tombrello,et al.  Ca isotope fractionation on the Earth and other solar system materials , 1978 .

[46]  H. R. Gunten,et al.  Independent yields of 82Br, 86Rb, 136Cs and 150Pm in spontaneous fission of 252Cf , 1969 .

[47]  J. Blichert‐Toft,et al.  Inherited 142Nd anomalies in Eoarchean protoliths , 2013 .

[48]  Arshad Ali,et al.  Precise thermal ionization mass spectrometric measurements of 142Nd/144Nd and 143Nd/144Nd isotopic ratios of Nd separated from geological standards by chromatographic methods , 2011 .