Molecular mechanism for the control of virulent Toxoplasma gondii infections in wild-derived mice

[1]  J. Saeij,et al.  Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death , 2017, Current opinion in microbiology.

[2]  B. Clough,et al.  The Toxoplasma Parasitophorous Vacuole: An Evolving Host-Parasite Frontier. , 2017, Trends in parasitology.

[3]  L. Sibley,et al.  Toxoplasma Effectors Targeting Host Signaling and Transcription , 2017, Clinical Microbiology Reviews.

[4]  J. Howard,et al.  The impact of Toxoplasma gondii on the mammalian genome. , 2016, Current opinion in microbiology.

[5]  T. Steinfeldt,et al.  The Toxoplasma gondii rhoptry protein ROP18 is an Irga6‐specific kinase and regulated by the dense granule protein GRA7 , 2015, Cellular microbiology.

[6]  Michael S. Behnke,et al.  Rhoptry Proteins ROP5 and ROP18 Are Major Murine Virulence Factors in Genetically Divergent South American Strains of Toxoplasma gondii , 2015, PLoS genetics.

[7]  H. Ploegh,et al.  Toxoplasma gondii Superinfection and Virulence during Secondary Infection Correlate with the Exact ROP5/ROP18 Allelic Combination , 2015, mBio.

[8]  J. Boothroyd,et al.  The Toxoplasma Pseudokinase ROP5 Is an Allosteric Inhibitor of the Immunity-related GTPases* , 2014, The Journal of Biological Chemistry.

[9]  L. Sibley,et al.  The Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that synergize to control acute virulence in mice. , 2014, Cell host & microbe.

[10]  F. Yarovinsky Innate immunity to Toxoplasma gondii infection , 2014, Nature Reviews Immunology.

[11]  L. Sibley,et al.  Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse , 2014, Proceedings of the National Academy of Sciences.

[12]  Xing-Quan Zhu,et al.  Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping , 2013, Parasitology.

[13]  T. Steinfeldt,et al.  Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse , 2013, eLife.

[14]  R. Valdivia,et al.  IRG and GBP Host Resistance Factors Target Aberrant, “Non-self” Vacuoles Characterized by the Missing of “Self” IRGM Proteins , 2013, PLoS pathogens.

[15]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[16]  Michael S. Behnke,et al.  The Polymorphic Pseudokinase ROP5 Controls Virulence in Toxoplasma gondii by Regulating the Active Kinase ROP18 , 2012, PLoS pathogens.

[17]  J. Boothroyd,et al.  A Toxoplasma gondii Pseudokinase Inhibits Host IRG Resistance Proteins , 2012, PLoS biology.

[18]  M. Yaffe,et al.  The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response , 2012, PLoS pathogens.

[19]  P. Zhou,et al.  Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages , 2012, Proceedings of the National Academy of Sciences.

[20]  T. Steinfeldt,et al.  The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. , 2011, Current opinion in microbiology.

[21]  S. Kaufmann,et al.  The IFN-γ-Inducible GTPase, Irga6, Protects Mice against Toxoplasma gondii but Not against Plasmodium berghei and Some Other Intracellular Pathogens , 2011, PloS one.

[22]  Michael S. Behnke,et al.  Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases , 2011, Proceedings of the National Academy of Sciences.

[23]  J. Ajioka,et al.  Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. , 2011, International journal for parasitology.

[24]  J. Boothroyd,et al.  Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence , 2011, Proceedings of the National Academy of Sciences.

[25]  Michael S. Behnke,et al.  Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. , 2010, Cell host & microbe.

[26]  L. Sibley,et al.  Phosphorylation of Mouse Immunity-Related GTPase (IRG) Resistance Proteins Is an Evasion Strategy for Virulent Toxoplasma gondii , 2010, PLoS biology.

[27]  J. Boothroyd,et al.  Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole , 2010, Cellular microbiology.

[28]  J. Ajioka,et al.  Selection at a Single Locus Leads to Widespread Expansion of Toxoplasma gondii Lineages That Are Virulent in Mice , 2009, PLoS genetics.

[29]  Yang O. Zhao,et al.  Disruption of the Toxoplasma gondii Parasitophorous Vacuole by IFNγ-Inducible Immunity-Related GTPases (IRG Proteins) Triggers Necrotic Cell Death , 2009, PLoS pathogens.

[30]  J. Zerrahn,et al.  Inactive and Active States of the Interferon-inducible Resistance GTPase, Irga6, in Vivo , 2008, Journal of Biological Chemistry.

[31]  L. Sibley,et al.  Autophagosome-Independent Essential Function for the Autophagy Protein Atg5 in Cellular Immunity to Intracellular Pathogens , 2008, Cell Host & Microbe.

[32]  J. Zerrahn,et al.  Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii , 2008, The EMBO journal.

[33]  L. Weiss,et al.  The Gamma Interferon (IFN-γ)-Inducible GTP-Binding Protein IGTP Is Necessary for Toxoplasma Vacuolar Disruption and Induces Parasite Egression in IFN-γ-Stimulated Astrocytes , 2008, Infection and Immunity.

[34]  R. Gilbert,et al.  Ocular Sequelae of Congenital Toxoplasmosis in Brazil Compared with Europe , 2008, PLoS neglected tropical diseases.

[35]  C. Su,et al.  Population structure and mouse-virulence of Toxoplasma gondii in Brazil. , 2008, International journal for parasitology.

[36]  A. Sher,et al.  Control of IFN-gamma-mediated host resistance to intracellular pathogens by immunity-related GTPases (p47 GTPases). , 2007, Microbes and infection.

[37]  J. Howard,et al.  Cell-autonomous immunity to Toxoplasma gondii in mouse and man. , 2007, Microbes and infection.

[38]  Michael S. Behnke,et al.  A Secreted Serine-Threonine Kinase Determines Virulence in the Eukaryotic Pathogen Toxoplasma gondii , 2006, Science.

[39]  J. Ajioka,et al.  Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis , 2006, Science.

[40]  S. Martens,et al.  The interferon-inducible GTPases. , 2006, Annual review of cell and developmental biology.

[41]  U. Koszinowski,et al.  Common and Specific Properties of Herpesvirus UL34/UL31 Protein Family Members Revealed by Protein ComplementationAssay , 2006, Journal of Virology.

[42]  I. Coppens,et al.  Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages , 2006, The Journal of experimental medicine.

[43]  J. Zerrahn,et al.  Disruption of Toxoplasma gondii Parasitophorous Vacuoles by the Mouse p47-Resistance GTPases , 2005, PLoS pathogens.

[44]  D. Dunn,et al.  The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage , 2005, Genome Biology.

[45]  A. Sher,et al.  p47 GTPases Regulate Toxoplasma gondii Survival in Activated Macrophages , 2005, Infection and Immunity.

[46]  C. Herrmann,et al.  Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. , 2004, Molecular cell.

[47]  M. Demar,et al.  Genetic diversity, clonality and sexuality in Toxoplasma gondii. , 2004, International journal for parasitology.

[48]  E. Wolf,et al.  Mechanisms Regulating the Positioning of Mouse p47 Resistance GTPases LRG-47 and IIGP1 on Cellular Membranes: Retargeting to Plasma Membrane Induced by Phagocytosis1 , 2004, The Journal of Immunology.

[49]  T. Lehmann,et al.  Variation in the structure of Toxoplasma gondii and the roles of selfing, drift, and epistatic selection in maintaining linkage disequilibria. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[50]  M. Grigg,et al.  The SRS superfamily of Toxoplasma surface proteins. , 2004, International journal for parasitology.

[51]  Harvey T. McMahon,et al.  The dynamin superfamily: universal membrane tubulation and fission molecules? , 2004, Nature Reviews Molecular Cell Biology.

[52]  S. Parmley,et al.  Serotyping of Toxoplasma gondii infections in humans using synthetic peptides. , 2003, The Journal of infectious diseases.

[53]  Catherine Li,et al.  High-Throughput Growth Assay for Toxoplasma gondii Using Yellow Fluorescent Protein , 2003, Antimicrobial Agents and Chemotherapy.

[54]  J. Boothroyd,et al.  Population biology of Toxoplasma gondii and its relevance to human infection: do different strains cause different disease? , 2002, Current opinion in microbiology.

[55]  A. Galarneau,et al.  β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions , 2002, Nature Biotechnology.

[56]  C. Hunter Faculty Opinions recommendation of Inactivation of LRG-47 and IRG-47 reveals a family of interferon gamma-inducible genes with essential, pathogen-specific roles in resistance to infection. , 2001 .

[57]  A. Sher,et al.  Inactivation of Lrg-47 and Irg-47 Reveals a Family of Interferon γ–Inducible Genes with Essential, Pathogen-Specific Roles in Resistance to Infection , 2001, The Journal of experimental medicine.

[58]  T. Pennington,et al.  Molecular typing of Toxoplasma gondii strains by GRA6 gene sequence analysis. , 2000, International journal for parasitology.

[59]  A. Sher,et al.  Pathogen-specific loss of host resistance in mice lacking the IFN-γ-inducible gene IGTP , 2000 .

[60]  K. Pfeffer,et al.  Two families of GTPases dominate the complex cellular response to IFN-gamma. , 1998, Journal of immunology.

[61]  E. Caumes,et al.  Toxoplasma gondii-Associated Guillain-Barré Syndrome in an Immunocompetent Patient , 1998, Journal of Clinical Microbiology.

[62]  H. Teh,et al.  Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases. , 1998, Journal of immunology.

[63]  E. Craig,et al.  Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. , 1996, Genetics.

[64]  L. Sibley,et al.  Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. , 1995, The Journal of infectious diseases.

[65]  J.,et al.  Detection of mycoplasma contamination in cell cultures by a mycoplasma group-specific PCR , 1994, Applied and environmental microbiology.

[66]  L. David Sibley,et al.  Virulent strains of Toxoplasma gondii comprise a single clonal lineage , 1992, Nature.

[67]  J. Dubremetz,et al.  Characterization of the protein contents of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies. , 1991, Molecular and biochemical parasitology.

[68]  L. Jacobs,et al.  Antigenic differences between endozoites and cystozoites of Toxoplasma gondii. , 1983, The Journal of parasitology.

[69]  M. Sogorb,et al.  On the gametogonic cycle of Toxoplasma gondii. , 1971, Revista do Instituto de Medicina Tropical de Sao Paulo.

[70]  C. Herrmann,et al.  Supplemental data Crystal Structure of IIGP 1 : A Paradigm for Interferon-Inducible p 47 Resistance GTPases , 2009 .

[71]  Stephen W Michnick,et al.  Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. , 2002, Nature biotechnology.

[72]  A. Sher,et al.  Pathogen-specific loss of host resistance in mice lacking the IFN-gamma-inducible gene IGTP. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[73]  D. Roos,et al.  Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. , 1994, Methods in cell biology.