Tolerance of Perovskite Solar Cell to High-Energy Particle Irradiations in Space Environment

[1]  J. R. Carter,et al.  Solar cell radiation handbook , 1989 .

[2]  M. Yamaguchi,et al.  Mechanism for the anomalous degradation of Si solar cells induced by high fluence 1 MeV electron irradiation , 1996 .

[3]  T. Ohshima,et al.  Anomalous degradation in silicon solar cells subjected to high-fluence proton and electron irradiations , 1997 .

[4]  Sumio Matsuda,et al.  Proton radiation analysis of multi-junction space solar cells , 2003 .

[5]  David B. Mitzi,et al.  Synthesis, Structure, and Properties of Organic‐Inorganic Perovskites and Related Materials , 2007 .

[6]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[7]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[8]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[9]  B. Anspaugh GaAs Solar Cell Radiation Handbook , 2014 .

[10]  T. Miyasaka Perovskite Photovoltaics: Rare Functions of Organo Lead Halide in Solar Cells and Optoelectronic Devices , 2015 .

[11]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[12]  T. Miyasaka,et al.  Stability of solution-processed MAPbI3 and FAPbI3 layers. , 2016, Physical chemistry chemical physics : PCCP.

[13]  A. Jen,et al.  Facile Thiol‐Ene Thermal Crosslinking Reaction Facilitated Hole‐Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells , 2016 .

[14]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[15]  Rajan Jose,et al.  Progress, challenges and perspectives in flexible perovskite solar cells , 2016 .

[16]  Tsutomu Miyasaka,et al.  A SnOx-brookite TiO2 bilayer electron collector for hysteresis-less high efficiency plastic perovskite solar cells fabricated at low process temperature. , 2016, Chemical communications.

[17]  K. Ho,et al.  Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers , 2016, Scientific Reports.

[18]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[19]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[20]  Rafael S Sánchez,et al.  Light-induced effects on Spiro-OMeTAD films and hybrid lead halide perovskite solar cells , 2016 .

[21]  G. Landi,et al.  Radiation Hardness and Self‐Healing of Perovskite Solar Cells , 2016, Advanced materials.

[22]  Michio Tajima,et al.  Radiation degradation characteristics of component subcells in inverted metamorphic triple‐junction solar cells irradiated with electrons and protons , 2017 .

[23]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[24]  M. Ikegami,et al.  Severe Morphological Deformation of Spiro-OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature , 2017 .

[25]  Martin A. Green,et al.  Perovskite Solar Cells: The Birth of a New Era in Photovoltaics , 2017 .

[26]  G. Landi,et al.  Defect Dynamics in Proton Irradiated CH3NH3PbI3 Perovskite Solar Cells , 2017 .

[27]  T. Miyasaka,et al.  Stabilizing the Efficiency Beyond 20% with a Mixed Cation Perovskite Solar Cell Fabricated in Ambient Air under Controlled Humidity , 2018 .