Database Technology for Processing Temporal Data

Despite the ubiquity of temporal data and considerable research on processing such data, database systems largely remain designed for processing the current state of some modeled reality. More recently, we have seen an increasing interest in processing historical or temporal data. The SQL:2011 standard introduced some temporal features, and commercial database management systems have started to offer temporal functionalities in a step-by-step manner. There has also been a proposal for a more fundamental and comprehensive solution for sequenced temporal queries, which allows a tight integration into relational database systems, thereby taking advantage of existing query optimization and evaluation technologies. New challenges for processing temporal data arise with multiple dimensions of time and the increasing amounts of data, including time series data that represent a special kind of temporal data. 2012 ACM Subject Classification Information systems → Data management systems, Information systems → Temporal data

[1]  Richard T. Snodgrass,et al.  Spatiotemporal aggregate computation: a survey , 2005, IEEE Transactions on Knowledge and Data Engineering.

[2]  Nikos Mamoulis,et al.  A Forward Scan based Plane Sweep Algorithm for Parallel Interval Joins , 2017, Proc. VLDB Endow..

[3]  Michael H. Böhlen,et al.  A split operator for now-relative bitemporal databases , 2001, Proceedings 17th International Conference on Data Engineering.

[4]  David Toman,et al.  Point vs. interval-based query languages for temporal databases (extended abstract) , 1996, PODS.

[5]  Christian S. Jensen,et al.  Join operations in temporal databases , 2005, The VLDB Journal.

[6]  Richard T. Snodgrass,et al.  Computing temporal aggregates , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[7]  Norman May,et al.  Timeline index: a unified data structure for processing queries on temporal data in SAP HANA , 2013, SIGMOD '13.

[8]  Walid G. Aref,et al.  Space-Partitioning Trees in PostgreSQL: Realization and Performance , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[9]  Donald Kossmann,et al.  Comprehensive and Interactive Temporal Query Processing with SAP HANA , 2013, Proc. VLDB Endow..

[10]  Christian S. Jensen,et al.  Database Technology for Processing Temporal Data (Invited Paper) , 2018, TIME.

[11]  Mohammed Al-Kateb,et al.  Temporal query processing in Teradata , 2013, EDBT '13.

[12]  Sven Helmer,et al.  An interval join optimized for modern hardware , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[13]  Dusan Petkovic,et al.  Temporal Data in Relational Database Systems: A Comparison , 2016, WorldCIST.

[14]  Nikos A. Lorentzos,et al.  SQL Extension for Interval Data , 1997, IEEE Trans. Knowl. Data Eng..

[15]  Christian S. Jensen,et al.  Extending the Kernel of a Relational DBMS with Comprehensive Support for Sequenced Temporal Queries , 2016, ACM Trans. Database Syst..

[16]  Dimitrios Gunopulos,et al.  Efficient computation of temporal aggregates with range predicates , 2001, PODS '01.

[17]  Ramez Elmasri,et al.  A consensus glossary of temporal database concepts , 1994, SGMD.

[18]  Christian S. Jensen,et al.  Temporal Data Model and Query Language Concepts , 2002, Encyclopedia of Information Systems.

[19]  Joseph M. Hellerstein,et al.  Generalized Search Tree , 2009, Encyclopedia of Database Systems.

[20]  Bongki Moon,et al.  Efficient Algorithms for Large-Scale Temporal Aggregation , 2003, IEEE Trans. Knowl. Data Eng..

[21]  Christian S. Jensen,et al.  Temporal Data Management - An Overview , 2017, eBISS.

[22]  Christian S. Jensen,et al.  Temporal statement modifiers , 2000, TODS.

[23]  Jennifer Widom,et al.  Incremental computation and maintenance of temporal aggregates , 2003, The VLDB Journal.

[24]  Michael H. Böhlen,et al.  Temporal alignment , 2012, SIGMOD Conference.

[25]  Michael H. Böhlen,et al.  Disjoint interval partitioning , 2017, The VLDB Journal.

[26]  Christian S. Jensen,et al.  Multi-dimensional Aggregation for Temporal Data , 2006, EDBT.

[27]  Michael H. Böhlen,et al.  Overlap interval partition join , 2014, SIGMOD Conference.

[28]  Christian S. Jensen,et al.  Extending Existing Dependency Theory to Temporal Databases , 1996, IEEE Trans. Knowl. Data Eng..