Multidimensional Fast Gauss Transforms by Chebyshev Expansions

A new version of the fast Gauss transform (FGT) is introduced which is based on a truncated Chebyshev series expansion of the Gaussian. Unlike the traditional fast algorithms, the scheme does not subdivide sources and evaluation points into multiple clusters. Instead, the whole problem geometry is treated as a single cluster. Estimates for the error as a function of the dimension $d$ and the expansion order $p$ will be derived. The new algorithm has order ${d+p+1\choose d}(N+M)$ complexity, where $M$ and $N$ are the number of sources and evaluation points. For a fixed $p$, this estimate is only polynomial in $d$. However, to maintain accuracy it is necessary to increase $p$ with $d$. The precise relationship between $d$ and $p$ is investigated analytically and numerically.

[1]  V. Raykar,et al.  Fast Computation of Sums of Gaussians in High Dimensions , 2005 .

[2]  L. Greengard,et al.  A new version of the fast Gauss transform. , 1998 .

[3]  J. Simonoff Multivariate Density Estimation , 1996 .

[4]  Larry S. Davis,et al.  Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  George Roussos,et al.  A New Error Estimate of the Fast Gauss Transform , 2002, SIAM J. Sci. Comput..

[6]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[7]  George E. Karniadakis,et al.  A sharp error estimate for the fast Gauss transform , 2006, J. Comput. Phys..

[8]  Nando de Freitas,et al.  Fast Computational Methods for Visually Guided Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Xiaobai Sun,et al.  A Kronecker Product Representation of the Fast Gauss Transform , 2002, SIAM J. Matrix Anal. Appl..

[10]  Fredrik Andersson,et al.  The fast Gauss transform with complex parameters , 2005 .

[11]  OREN E. LIVNE FAST MULTILEVEL EVALUATION OF SMOOTH RADIAL BASIS FUNCTION EXPANSIONS , 2006 .

[12]  Mark Broadie,et al.  Application of the Fast Gauss Transform to Option Pricing , 2003, Manag. Sci..

[13]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[14]  Leslie Greengard,et al.  The Fast Gauss Transform , 1991, SIAM J. Sci. Comput..

[15]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.