Causal Discovery on Discrete Data with Extensions to Mixture Model

In this article, we deal with the causal discovery problem on discrete data. First, we present a causal discovery method for traditional additive noise models that identifies the causal direction by analyzing the supports of the conditional distributions. Then, we present a causal mixture model to address the problem that the function transforming cause to effect varies across the observations. We propose a novel method called Support Analysis (SA) for causal discovery with the mixture model. Experiments using synthetic and real data are presented to demonstrate the performance of our proposed algorithm.

[1]  Hai Yang,et al.  ACM Transactions on Intelligent Systems and Technology - Special Section on Urban Computing , 2014 .

[2]  Bernhard Schölkopf,et al.  Detecting the direction of causal time series , 2009, ICML '09.

[3]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[4]  Aapo Hyvärinen,et al.  Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity , 2010, J. Mach. Learn. Res..

[5]  Bernhard Schölkopf,et al.  Kernel-based Conditional Independence Test and Application in Causal Discovery , 2011, UAI.

[6]  Bernhard Schölkopf,et al.  On Causal Discovery with Cyclic Additive Noise Models , 2011, NIPS.

[7]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[8]  Bernhard Schölkopf,et al.  Detecting low-complexity unobserved causes , 2011, UAI.

[9]  Bernhard Schölkopf,et al.  Identifying Cause and Effect on Discrete Data using Additive Noise Models , 2010, AISTATS.

[10]  Bernhard Schölkopf,et al.  Domain Adaptation under Target and Conditional Shift , 2013, ICML.

[11]  Aapo Hyvärinen,et al.  Pairwise likelihood ratios for estimation of non-Gaussian structural equation models , 2013, J. Mach. Learn. Res..

[12]  Chengfei Liu,et al.  Discover Dependencies from Data—A Review , 2012, IEEE Transactions on Knowledge and Data Engineering.

[13]  Karsten M. Borgwardt,et al.  Covariate Shift by Kernel Mean Matching , 2009, NIPS 2009.

[14]  Aapo Hyvärinen,et al.  Causal discovery of linear acyclic models with arbitrary distributions , 2008, UAI.

[15]  Moritz Grosse-Wentrup,et al.  Quantifying causal influences , 2012, 1203.6502.

[16]  Patrik O. Hoyer,et al.  Bayesian Discovery of Linear Acyclic Causal Models , 2009, UAI.

[17]  Elias Bareinboim,et al.  Local Characterizations of Causal Bayesian Networks , 2011, GKR.

[18]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[19]  Aapo Hyvärinen,et al.  On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.

[20]  Aapo Hyvärinen,et al.  DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..

[21]  Aapo Hyvärinen,et al.  Causality Discovery with Additive Disturbances: An Information-Theoretical Perspective , 2009, ECML/PKDD.

[22]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[23]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[24]  Zhitang Chen,et al.  Causal discovery with scale-mixture model for spatiotemporal variance dependencies , 2012, NIPS.

[25]  Hannu Toivonen,et al.  Effective Pruning for the Discovery of Conditional Functional Dependencies , 2013, Comput. J..

[26]  Zhitang Chen,et al.  Causality in Linear Nongaussian Acyclic Models in the Presence of Latent Gaussian Confounders , 2013, Neural Computation.

[27]  Bernhard Schölkopf,et al.  Causal Inference on Discrete Data Using Additive Noise Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Shohei Shimizu,et al.  Joint estimation of linear non-Gaussian acyclic models , 2011, Neurocomputing.