Causal Discovery on Discrete Data with Extensions to Mixture Model
暂无分享,去创建一个
[1] Hai Yang,et al. ACM Transactions on Intelligent Systems and Technology - Special Section on Urban Computing , 2014 .
[2] Bernhard Schölkopf,et al. Detecting the direction of causal time series , 2009, ICML '09.
[3] A. Dawid. Conditional Independence in Statistical Theory , 1979 .
[4] Aapo Hyvärinen,et al. Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity , 2010, J. Mach. Learn. Res..
[5] Bernhard Schölkopf,et al. Kernel-based Conditional Independence Test and Application in Causal Discovery , 2011, UAI.
[6] Bernhard Schölkopf,et al. On Causal Discovery with Cyclic Additive Noise Models , 2011, NIPS.
[7] Qiang Yang,et al. A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.
[8] Bernhard Schölkopf,et al. Detecting low-complexity unobserved causes , 2011, UAI.
[9] Bernhard Schölkopf,et al. Identifying Cause and Effect on Discrete Data using Additive Noise Models , 2010, AISTATS.
[10] Bernhard Schölkopf,et al. Domain Adaptation under Target and Conditional Shift , 2013, ICML.
[11] Aapo Hyvärinen,et al. Pairwise likelihood ratios for estimation of non-Gaussian structural equation models , 2013, J. Mach. Learn. Res..
[12] Chengfei Liu,et al. Discover Dependencies from Data—A Review , 2012, IEEE Transactions on Knowledge and Data Engineering.
[13] Karsten M. Borgwardt,et al. Covariate Shift by Kernel Mean Matching , 2009, NIPS 2009.
[14] Aapo Hyvärinen,et al. Causal discovery of linear acyclic models with arbitrary distributions , 2008, UAI.
[15] Moritz Grosse-Wentrup,et al. Quantifying causal influences , 2012, 1203.6502.
[16] Patrik O. Hoyer,et al. Bayesian Discovery of Linear Acyclic Causal Models , 2009, UAI.
[17] Elias Bareinboim,et al. Local Characterizations of Causal Bayesian Networks , 2011, GKR.
[18] Tom Burr,et al. Causation, Prediction, and Search , 2003, Technometrics.
[19] Aapo Hyvärinen,et al. On the Identifiability of the Post-Nonlinear Causal Model , 2009, UAI.
[20] Aapo Hyvärinen,et al. DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian Structural Equation Model , 2011, J. Mach. Learn. Res..
[21] Aapo Hyvärinen,et al. Causality Discovery with Additive Disturbances: An Information-Theoretical Perspective , 2009, ECML/PKDD.
[22] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[23] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[24] Zhitang Chen,et al. Causal discovery with scale-mixture model for spatiotemporal variance dependencies , 2012, NIPS.
[25] Hannu Toivonen,et al. Effective Pruning for the Discovery of Conditional Functional Dependencies , 2013, Comput. J..
[26] Zhitang Chen,et al. Causality in Linear Nongaussian Acyclic Models in the Presence of Latent Gaussian Confounders , 2013, Neural Computation.
[27] Bernhard Schölkopf,et al. Causal Inference on Discrete Data Using Additive Noise Models , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[28] Shohei Shimizu,et al. Joint estimation of linear non-Gaussian acyclic models , 2011, Neurocomputing.