All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electrolyte

[1]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[2]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[3]  Sehee Lee,et al.  Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries , 2012 .

[4]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[5]  High lithium ion conducting Li2S–GeS2–P2S5 glass–ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries , 2011 .

[6]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[7]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[8]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[9]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[10]  Masahiro Tatsumisago,et al.  High Rate Performance, Wide Temperature Operation and Long Cyclability of All-Solid-State Rechargeable Lithium Batteries Using Mo-S Chevrel-Phase Compound , 2013 .

[11]  J. Goodenough,et al.  Lithium Intercalation into ATi2(PS4)3 (A = Li, Na, Ag) , 2008 .

[12]  Seung M. Oh,et al.  Thermo‐electrochemical Activation of an In–Cu Intermetallic Electrode for the Anode in Lithium Secondary Batteries , 2008 .

[13]  Robert Dominko,et al.  The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc , 2008 .

[14]  Seung M. Oh,et al.  Thermoelectrochemically Activated MoO2 Powder Electrode for Lithium Secondary Batteries , 2009 .

[15]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[16]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[17]  J. Goodenough,et al.  3D framework structure of a new lithium thiophosphate, LiTi2(PS4)(3), as lithium insertion hosts , 2008 .

[18]  Peng Lu,et al.  Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li‐Ion Batteries , 2013 .

[19]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[20]  A. Hayashi,et al.  Interfacial Observation between LiCoO2 Electrode and Li2S−P2S5 Solid Electrolytes of All-Solid-State Lithium Secondary Batteries Using Transmission Electron Microscopy† , 2010 .

[21]  A. Manthiram,et al.  Challenges and prospects of lithium-sulfur batteries. , 2013, Accounts of chemical research.

[22]  Sehee Lee,et al.  High Power Nanocomposite TiS2 Cathodes for All-Solid-State Lithium Batteries , 2011 .

[23]  J. Goodenough Challenges for Rechargeable Li Batteries , 2010 .

[24]  Thomas A. Yersak,et al.  Solid State Enabled Reversible Four Electron Storage , 2013 .

[25]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[26]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[27]  M. Osada,et al.  Enhancement of the High‐Rate Capability of Solid‐State Lithium Batteries by Nanoscale Interfacial Modification , 2006 .

[28]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[29]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.