Preprogrammed assembly of supramolecular polymer networks via the controlled disassembly of a metastable rotaxane

[1]  Zonghuan Lu,et al.  Precise Control of Radial Catenane Synthesis via Clipping and Pumping. , 2022, Journal of the American Chemical Society.

[2]  C. Yee,et al.  Macrocycle Dynamics in a Branched [8]Catenane Controlled by Three Different Stimuli in Three Different Regions. , 2021, Angewandte Chemie.

[3]  B. Paulus,et al.  Sequence-sorted redox-switchable hetero[3]rotaxanes , 2021, Organic Chemistry Frontiers.

[4]  H. Y. Au‐Yeung,et al.  Fine-tuning of the optical output in a dual responsive catenane switch. , 2021, Chemical communications.

[5]  I. Samuel,et al.  Using the Mechanical Bond to Tune the Performance of a Thermally Activated Delayed Fluorescence Emitter** , 2021, Angewandte Chemie.

[6]  B. H. Wilson,et al.  Translational dynamics of a non-degenerate molecular shuttle imbedded in a zirconium metal–organic framework† , 2021, Chemical science.

[7]  I. Huc,et al.  Interplay Between a Foldamer Helix and a Macrocycle in a Foldarotaxane Architecture. , 2021, Angewandte Chemie.

[8]  Peter A. Summers,et al.  Rotaxanes as cages to control DNA binding, cytotoxicity and cellular uptake of a small molecule. , 2020, Angewandte Chemie.

[9]  Michael D. Pluth,et al.  Nanohoop Rotaxane Design to Enhance the Selectivity of Reaction-Based Probes: A Proof-of-Principle Study. , 2020, Organic letters.

[10]  M. Bagherzadeh,et al.  The flowering of Mechanically Interlocked Molecules: Novel approaches to the synthesis of rotaxanes and catenanes , 2020 .

[11]  N. Khashab,et al.  Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. , 2020, Chemical reviews.

[12]  Nanette N. Jarenwattananon,et al.  Active Metal Template Synthesis and Characterization of a Nanohoop [c2]Daisy Chain Rotaxane. , 2020, Chemistry.

[13]  Christoph Hörenz,et al.  UV-Triggered On-Demand Temperature-Responsive Reversible and Irreversible Gelation of Cellulose Nanocrystals , 2020, Biomacromolecules.

[14]  M. Stevens,et al.  Ultrasound-Triggered Enzymatic Gelation , 2020, Advanced materials.

[15]  M. MacLachlan,et al.  Programming permanent and transient molecular protection via mechanical stoppering† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc03744f , 2019, Chemical science.

[16]  E. Pérez,et al.  Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. , 2019, Chemical Society reviews.

[17]  Xi Zhang,et al.  Degradable Supramolecular Photodynamic Polymer Materials for Biofilm Elimination. , 2019, ACS applied bio materials.

[18]  M. MacLachlan,et al.  Disabling Molecular Recognition through Reversible Mechanical Stoppering. , 2019, Organic letters.

[19]  T. Takata,et al.  Cyclodextrin-Based [3]Rotaxane-Crosslinked Fluorescent Polymer: Synthesis and De-Crosslinking Using Size Complementarity. , 2018, Angewandte Chemie.

[20]  Daniel J. Tetlow,et al.  Securing a Supramolecular Architecture by Tying a Stopper Knot , 2018, Angewandte Chemie.

[21]  K. Zhu,et al.  Ring-through-ring molecular shuttling in a saturated [3]rotaxane , 2018, Nature Chemistry.

[22]  Hai-Gen Li,et al.  Liquid-Assisted One-Pot Mechanosynthesis and Properties of Neutral Donor-Acceptor [2]Rotaxanes. , 2017, The Journal of organic chemistry.

[23]  Feihe Huang,et al.  Taco complex-templated highly regio- and stereo-selective photodimerization of a coumarin-containing crown ether. , 2017, Chemical communications.

[24]  J. Tiburcio,et al.  Self-assembly of a supramolecular network with pseudo-rotaxane cross-linking nodes and its transformation into a mechanically locked structure by rotaxane formation. , 2016, Chemical communications.

[25]  J. Fraser Stoddart,et al.  The Nature of the Mechanical Bond: From Molecules to Machines , 2016 .

[26]  J. W. Ward,et al.  Triply Threaded [4]Rotaxanes. , 2016, Journal of the American Chemical Society.

[27]  Kristopher J Harris,et al.  Mechanically Interlocked Linkers inside Metal-Organic Frameworks: Effect of Ring Size on Rotational Dynamics. , 2015, Journal of the American Chemical Society.

[28]  Nicolaas A. Vermeulen,et al.  An ExBox [2]catenane , 2014 .

[29]  Douglas C. Friedman,et al.  Self-assembly of a [2]pseudorota[3]catenane in water. , 2012, Journal of the American Chemical Society.

[30]  Jishan Wu,et al.  Formation of [2]rotaxanes by encircling [20], [21] and [22]crown ethers onto the dibenzylammonium dumbbell , 2012 .

[31]  S. Asai,et al.  Size-complementary rotaxane cross-linking for the stabilization and degradation of a supramolecular network. , 2011, Angewandte Chemie.

[32]  G. Ramakrishna,et al.  Single-color pseudorotaxane-based temperature sensing , 2010 .

[33]  J. F. Stoddart,et al.  Improved synthesis of 1,5-dinaphtho[38]crown-10 , 2010 .

[34]  S. Asai,et al.  Polyrotaxane Networks Formed via Rotaxanation Utilizing Dynamic Covalent Chemistry of Disulfide , 2008 .

[35]  R. Scopelliti,et al.  Boron-based rotaxanes by multicomponent self-assembly. , 2008, Chemical communications.

[36]  Krishna N. Ganesh,et al.  BisPNA Targeting to DNA: Effect of Neutral Loop on DNA Duplex Strand Invasion by aepPNA‐N7G/aepPNA‐C Substituted Peptide Nucleic Acids , 2005 .

[37]  T. Takata,et al.  A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. , 2004, Angewandte Chemie.

[38]  R. Grubbs,et al.  Magic ring rotaxanes by olefin metathesis. , 2003, Angewandte Chemie.

[39]  J. F. Stoddart,et al.  A rotaxane-like complex with controlled-release characteristics. , 2000, Organic letters.

[40]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[41]  J. F. Stoddart,et al.  The Mechanism of the Slippage Approach to Rotaxanes. Origin of the “All-or-Nothing” Substituent Effect† , 1998 .

[42]  Christopher L. Brown,et al.  Recognition of Bipyridinium-Based Derivatives by Hydroquinone- and/or Dioxynaphthalene-Based Macrocyclic Polyethers: From Inclusion Complexes to the Self-Assembly of [2]Catenanes. , 1997, The Journal of organic chemistry.

[43]  Andrew J. P. White,et al.  Bis[2]catenanes and a bis[2]rotaxane–Model Compounds for Polymers with Mechanically Interlocked Components† , 1996 .

[44]  David J. Williams,et al.  Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules , 1995 .

[45]  Christopher L. Brown,et al.  Molecular Meccano. 2. Self-Assembly of [n]Catenanes , 1995 .

[46]  J. F. Stoddart,et al.  Slippage—an alternative method for assembling [2]rotaxanes , 1993 .

[47]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .