Boundary switch connectors for topological visualization of complex 3D vector fields

One of the reasons that topological methods have a limited popularity for the visualization of complex 3D flow fields is the fact that their topological structures contain a number of separating stream surfaces. Since these stream surfaces tend to hide each other as well as other topological features, for complex 3D topologies the visualizations become cluttered and hardly interpretable. One solution of this problem is the recently introduced concept of saddle connectors which treats separation surfaces emanating from critical points. In this paper we extend this concept to separation surfaces starting from boundary switch curves. This way we obtain a number of particular stream lines called boundary switch connectors. They connect either two boundary switch curves or a boundary switch curve with a saddle. We discuss properties and computational issues of boundary switch connectors and apply them to topologically complex flow data.

[1]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[2]  Robin N. Strickland,et al.  Vector Field Analysis and Synthesis Using Three-Dimensional Phase Portraits , 1997, CVGIP Graph. Model. Image Process..

[3]  Hans Hagen,et al.  Continuous topology simplification of planar vector fields , 2001, Proceedings Visualization, 2001. VIS '01..

[4]  Gerald E. Farin,et al.  The Curvature of Characteristic Curves on Surfaces , 1997, IEEE Computer Graphics and Applications.

[5]  Helwig Hauser,et al.  THOROUGH INSIGHTS BY ENHANCED VISUALIZATION OF FLOW TOPOLOGY , 2000 .

[6]  Hans Hagen,et al.  A tetrahedra-based stream surface algorithm , 2001, Proceedings Visualization, 2001. VIS '01..

[7]  Bernd Hamann,et al.  Visualizing local vector field topology , 2000, J. Electronic Imaging.

[8]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[9]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[10]  HesselinkLambertus,et al.  Representation and Display of Vector Field Topology in Fluid Flow Data Sets , 1989 .

[11]  Jeff P. Hultquist,et al.  Constructing stream surfaces in steady 3D vector fields , 1992, Proceedings Visualization '92.

[12]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[13]  Allen Van Gelder Stream Surface Generation for Fluid Flow Solutions on Curvilinear Grids , 2001, VisSym.

[14]  B. R. Noack,et al.  On the transition of the cylinder wake , 1995 .

[15]  D. Asimov Notes on the Topology of Vector Fields and Flows , 2003 .

[16]  Lambertus Hesselink,et al.  Feature comparisons of vector fields using Earth mover's distance , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[17]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[18]  T. Steinke,et al.  Visualization of Vector Fields in Quantum Chemistry , 1996 .

[19]  Hans-Peter Seidel,et al.  Saddle connectors - an approach to visualizing the topological skeleton of complex 3D vector fields , 2003, IEEE Visualization, 2003. VIS 2003..

[20]  Holger Theisel,et al.  Vector Field Metrics Based on Distance Measures of First Order Critical Points , 2002, WSCG.

[21]  J. V. van Wijk,et al.  Implicit stream surfaces , 1993, Proceedings Visualization '93.

[22]  Bernd Hamann,et al.  Topological segmentation in three-dimensional vector fields , 2004, IEEE Transactions on Visualization and Computer Graphics.

[23]  Jarke J. van Wijk Implicit Stream Surfaces , 1993, IEEE Visualization.

[24]  Al Globus,et al.  A tool for visualizing the topology of three-dimensional vector fields , 1991, Proceeding Visualization '91.

[25]  Holger Theisel,et al.  Curvature Measures of 3D Vector Fields and their Applications , 2002, WSCG.

[26]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[27]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[28]  Helwig Löffelmann,et al.  Visualizing Dynamical Systems near Critical Points , 1998 .

[29]  Rüdiger Westermann,et al.  Topology-Preserving Smoothing of Vector Fields , 2001, IEEE Trans. Vis. Comput. Graph..

[30]  Bernd Hamann,et al.  Improving Topological Segmentation of Three-dimensional Vector Fields , 2003, VisSym.

[31]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[32]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[33]  Holger Theisel Designing 2D Vector Fields of Arbitrary Topology , 2002, Comput. Graph. Forum.

[34]  Hans-Peter Seidel,et al.  Feature Flow Fields , 2003, VisSym.

[35]  Hans Hagen,et al.  Topology tracking for the visualization of time-dependent two-dimensional flows , 2002, Comput. Graph..

[36]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[37]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000 .

[38]  Lambertus Hesselink,et al.  Feature comparisons of vector fields using earth mover's distance , 1998 .

[39]  Hans Hagen,et al.  A topology simplification method for 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[40]  H.-C. Hege,et al.  Interactive visualization of 3D-vector fields using illuminated stream lines , 1996, Proceedings of Seventh Annual IEEE Visualization '96.