Pure Cutting‐Plane Algorithms and their Convergence

Cutting-plane methods solve a mixed-integer program (MIP) by iteratively adding a valid linear inequality that violates a fractional solution of a linear relaxation of the problem. This article surveys cutting-plane algorithms for different subclasses of MIPs and addresses whether these algorithms converge to an optimal solution of MIP in finitely many steps. Keywords: cutting-plane algorithm; convergence; integer programming

[1]  George L. Nemhauser,et al.  A finiteness proof for modified dantzig cuts in integer programming , 1970 .

[2]  Markus Jorg k-Disjunctive cuts and a finite cutting plane algorithm for general mixed integer linear programs , 2007 .

[3]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[4]  Alberto Del Pia,et al.  On convergence in mixed integer programming , 2012, Math. Program..

[5]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[6]  Sanjay Mehrotra,et al.  A disjunctive cutting plane procedure for general mixed-integer linear programs , 2001, Math. Program..

[7]  Manfred W. Padberg,et al.  Classical Cuts for Mixed-Integer Programming and Branch-and-Cut , 2005, Ann. Oper. Res..

[8]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[9]  E. Andrew Boyd,et al.  Fenchel Cutting Planes for Integer Programs , 1994, Oper. Res..

[10]  David E. Bell A Cutting Plane Algorithm for Integer Programs With an Easy Proof of Convergence , 1973 .

[11]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[12]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[13]  Egon Balas,et al.  Lexicography and degeneracy: can a pure cutting plane algorithm work? , 2011, Math. Program..

[14]  Francis J. Nourie,et al.  An upper bound on the number of cuts needed in Gomory's method of integer forms , 1982, Oper. Res. Lett..

[15]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[16]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.

[17]  Sanjeeb Dash,et al.  Lattice-free sets, branching disjunctions, and mixed-integer programming , 2012 .

[18]  Warren P. Adams,et al.  A hierarchy of relaxation between the continuous and convex hull representations , 1990 .

[19]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Leading to the Convex Hull Representation for General Discrete Optimization Problems , 2005, Ann. Oper. Res..

[20]  Lewis Ntaimo,et al.  Fenchel decomposition for stochastic mixed-integer programming , 2013, J. Glob. Optim..

[21]  Egon Balas,et al.  Gomory cuts revisited , 1996, Oper. Res. Lett..

[22]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[23]  Ronald D. Armstrong,et al.  Page cuts for integer interval linear programming , 1979, Discret. Appl. Math..

[24]  Nikhil R. Devanur,et al.  New Geometry-Inspired Relaxations and Algorithms for the Metric Steiner Tree Problem , 2008, IPCO.

[25]  E. Balas Disjunctive programming: To: E. Balas in: P.L. Hammer, E.L. Johnson and B.H. Korete, eds., Discrete Optimization II, Ann. Discrete Math 5 (North-Holland, Amsterdam, 1979) 3-51 , 1983, Discret. Appl. Math..

[26]  Ralph E. Gomory,et al.  Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.

[27]  Gérard Cornuéjols,et al.  Valid inequalities for mixed integer linear programs , 2007, Math. Program..

[28]  Hanif D. Sherali,et al.  On the convergence of cutting plane algorithms for a class of nonconvex mathematical programs , 1985, Math. Program..

[29]  Suvrajeet Sen,et al.  Finite Disjunctive Programming Characterizations for General Mixed-Integer Linear Programs , 2011, Oper. Res..

[30]  Egon Balas,et al.  On the enumerative nature of Gomory’s dual cutting plane method , 2010, Math. Program..

[31]  Laurence A. Wolsey,et al.  A recursive procedure to generate all cuts for 0–1 mixed integer programs , 1990, Math. Program..

[32]  Laurence A. Wolsey,et al.  Cutting planes in integer and mixed integer programming , 2002, Discret. Appl. Math..

[33]  Suvrajeet Sen,et al.  A computational study of the cutting plane tree algorithm for general mixed-integer linear programs , 2012, Oper. Res. Lett..

[34]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations and Convex Hull Characterizations for Mixed-integer Zero-one Programming Problems , 1994, Discret. Appl. Math..

[35]  Dinakar Gade,et al.  Decomposition algorithms with parametric Gomory cuts for two-stage stochastic integer programs , 2012, Mathematical Programming.

[36]  Julia L. Higle,et al.  The C3 Theorem and a D2 Algorithm for Large Scale Stochastic Mixed-Integer Programming: Set Convexification , 2005, Math. Program..

[37]  Charles E. Blair Facial disjunctive programs and sequence of cutting-planes , 1980, Discret. Appl. Math..

[38]  E. Andrew Boyd On the Convergence of Fenchel Cutting Planes in Mixed-Integer Programming , 1995, SIAM J. Optim..

[39]  Robert G. Jeroslow A Cutting-Plane Game for Facial Disjunctive Programs , 1980 .

[40]  Gérard Cornuéjols,et al.  Elementary closures for integer programs , 2001, Oper. Res. Lett..

[41]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[42]  José Neto A simple finite cutting plane algorithm for integer programs , 2012, Oper. Res. Lett..

[44]  Hanif D. Sherali,et al.  Optimization with disjunctive constraints , 1980 .