Interactive Visualization of the Largest Radioastronomy Cubes

Abstract 3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS – 12 GB) southern sky and the Galactic All Sky Survey (GASS – 26 GB) data cubes were used to demonstrate our framework’s performance. The framework can render the GASS data cube with a maximum render time

[1]  Christopher J. Fluke,et al.  Visualization-Directed Interactive Model-Fitting to Spectral Data Cubes , 2010 .

[2]  Richard Gooch Astronomers and their shady algorithms , 1995, Proceedings Visualization '95.

[3]  Marcus A. Magnor,et al.  Reflection nebula visualization , 2005, VIS 05. IEEE Visualization, 2005..

[4]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[5]  Henning Scharsach Advanced GPU Raycasting , 2005 .

[6]  Won Kim,et al.  Modern Database Systems: The Object Model, Interoperability, and Beyond , 1995, Modern Database Systems.

[7]  David E. Breen,et al.  Proceedings of the IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics, PVG 2001, San Diego, California, USA, October 22-23, 2001 , 2001, IEEE Symposium on Parallel and Large-Data Visualization and Graphics.

[8]  B. Gibson,et al.  GASS: THE PARKES GALACTIC ALL-SKY SURVEY. I. SURVEY DESCRIPTION, GOALS, AND INITIAL DATA RELEASE , 2009, 0901.1159.

[9]  Bruce F. Naylor,et al.  Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.

[10]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[11]  R. L. White,et al.  Lossless Astronomical Image Compression and the Effects of Noise , 2009, 0903.2140.

[12]  Michael Lancaster,et al.  Visualizing astronomy data using VRML , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[14]  Hanan Samet,et al.  Spatial Data Structures , 1995, Modern Database Systems.

[15]  Gitta Domik,et al.  Visualization techniques to aid in the analysis of multi-spectral astrophysical data sets , 1993 .

[16]  Dietmar Saupe,et al.  Rapid High Quality Compression of Volume Data for Visualization , 2001, Comput. Graph. Forum.

[17]  Bernard Pailthorpe,et al.  Visualizing Stars and Emission Nebulas , 2001, Comput. Graph. Forum.

[18]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[19]  Antonio A. F. Oliveira,et al.  Memory Efficient GPU-Based Ray Casting for Unstructured Volume Rendering , 2008, VG/PBG@SIGGRAPH.

[20]  Wolfgang Straßer,et al.  Interactive rendering of large volume data sets , 2002, IEEE Visualization, 2002. VIS 2002..

[21]  U. Becciani,et al.  VisIVO–Integrated Tools and Services for Large-Scale Astrophysical Visualization , 2010, 1005.1837.

[22]  T. A. Oosterloo Adaptive filtering and masking of HI data cubes , 1996 .

[23]  Wilfred Pinfold,et al.  Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis , 2009, HiPC 2009.

[24]  Randall B. Wayth,et al.  A GPU-based Real-time Software Correlation System for the Murchison Widefield Array Prototype , 2009, 0906.1887.

[25]  Richard J. Beach,et al.  Proceedings of the 15th annual conference on Computer graphics and interactive techniques , 1988, International Conference on Computer Graphics and Interactive Techniques.

[26]  Gerard Lemson,et al.  GPU-Based Interactive Visualization of Billion Point Cosmological Simulations , 2008, ArXiv.

[27]  Santiago V. Lombeyda,et al.  Scalable interactive volume rendering using off-the-shelf components , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).

[28]  Tzihong Chiueh,et al.  GAMER: A GRAPHIC PROCESSING UNIT ACCELERATED ADAPTIVE-MESH-REFINEMENT CODE FOR ASTROPHYSICS , 2009, 0907.3390.

[29]  Hans-Christian Hege,et al.  GPU-Assisted Raycasting for Cosmological Adaptive Mesh Refinement Simulations , 2006, VG@SIGGRAPH.

[30]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[31]  Amar Mukherjee,et al.  An optimal parallel algorithm for volume ray casting , 1995, Proceedings of 9th International Parallel Processing Symposium.

[32]  T. Oosterloo Visualisation of Radio Data , 1995 .

[33]  Brett Beeson,et al.  A Distributed Data Implementation of the Perspective Shear-Warp Volume Rendering Algorithm for Visualisation of Large Astronomical Cubes , 2003, Publications of the Astronomical Society of Australia.

[34]  B. Gibson,et al.  The HI Parkes All Sky Survey: southern observations, calibration and robust imaging , 2001 .

[35]  Claudio Gheller,et al.  High-performance astrophysical visualization using Splotch , 2010, ICCS.

[36]  SabellaPaolo A rendering algorithm for visualizing 3D scalar fields , 1988 .

[37]  Makoto Taiji,et al.  42 TFlops hierarchical N-body simulations on GPUs with applications in both astrophysics and turbulence , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[38]  Chi-Wing Fu,et al.  Visualizing Multiwavelength Astrophysical Data , 2008, IEEE Transactions on Visualization and Computer Graphics.