Nonlinear estimation of transient flow field low dimensional states using artificial neural nets

Feedback flow control of the wake of a circular cylinder at a Reynolds number of 100 is an interesting and challenging benchmark for controlling absolute instabilities associated with bluff body wakes. A two dimensional computational fluid dynamics simulation is used to develop low-dimensional models for estimator design. Actuation is implemented as displacement of the cylinder normal to the flow. The estimation approach uses a low dimensional model based on a truncated 6 mode Double Proper Orthogonal Decomposition (DPOD) applied to the streamwise velocity component of the flow field. Sensor placement is based on the intensity of the resulting spatial modes. A non-linear Artificial Neural Network Estimator (ANNE) was employed to map the velocity data to the mode amplitudes of the DPOD model. For a given four sensor configuration, developed using a previously validated strategy, ANNE performed better than two state-of-the-art approaches, namely, a Quadratic Stochastic Estimator (QSE) and a Linear Stochastic Estimator with time delays (DSE).

[1]  Marco Debiasi,et al.  Influence of Stochastic Estimation on the Control of Subsonic Cavity Flow - A Preliminary Study , 2006 .

[2]  H Oertel,et al.  Wakes behind blunt bodies , 1990 .

[3]  Mark N. Glauser,et al.  Experimental Development of a Reduced-Order Model for Flow Separation Control , 2006 .

[4]  Kelly Cohen,et al.  Neural Network Estimator for Closed-Loop Control of a Cylinder Wake , 2006 .

[5]  E. A. Gillies Low-dimensional control of the circular cylinder wake , 1998, Journal of Fluid Mechanics.

[6]  Kelly Cohen,et al.  Nonlinear Estimation of Transient Flow Field Low Dimensional States Using Double Proper Orthogonal Decomposition , 2007 .

[7]  E. W. Hendricks,et al.  Feedback control of a global mode in spatially developing flows , 1993 .

[8]  Gilead Tadmor,et al.  Low-Dimensional Models For Feedback Flow Control. Part I: Empirical Galerkin models , 2004 .

[9]  Kimon Roussopoulos,et al.  Feedback control of vortex shedding at low Reynolds numbers , 1993, Journal of Fluid Mechanics.

[10]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[11]  Stefan Siegel,et al.  State Estimation of Transient Flow Fields Using Double Proper Orthogonal Decomposition (DPOD) , 2007 .

[12]  Nathan E. Murray,et al.  Estimating the Shear Layer Velocity Field Above an Open Cavity from Surface Pressure Measurements , 2002 .

[13]  K. Cohen,et al.  Low Dimensional Modeling, Estimation and Control of a Cylinder Wake , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Kelly Cohen,et al.  Short Time Proper Orthogonal Decomposition for State Estimation of Transient Flow Fields , 2005 .

[16]  Stefan Siegel,et al.  Reduced Order Modeling for Closed-Loop Control of Three Dimensional Wakes , 2006 .

[17]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[18]  Kelly Cohen,et al.  Numerical Simulations of a Feedback-Controlled Circular Cylinder Wake , 2006 .

[19]  Kelly Cohen,et al.  A heuristic approach to effective sensor placement for modeling of a cylinder wake , 2006 .

[20]  Robert Tomaro,et al.  The defining methods of Cobalt-60 - A parallel, implicit, unstructured Euler/Navier-Stokes flow solver , 1999 .

[21]  O. Nelles Nonlinear System Identification , 2001 .

[22]  Haecheon Choi,et al.  Suboptimal feedback control of vortex shedding at low Reynolds numbers , 1999, Journal of Fluid Mechanics.

[23]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[24]  G. H. Koopmann,et al.  The vortex wakes of vibrating cylinders at low Reynolds numbers , 1967, Journal of Fluid Mechanics.

[25]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .