A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview

The redshift interval 1.4 ≲ z ≲ 2.5 has been described by some as the "redshift desert" because of historical difficulties in spectroscopically identifying galaxies in that range. In fact, galaxies can be found in large numbers with standard broadband color selection techniques coupled with follow-up spectroscopy with UV and blue-sensitive spectrographs. In this paper we present the first results of a large-scale survey of such objects, carried out with the blue channel of the LRIS spectrograph (LRIS-B) on the Keck I Telescope. We introduce two samples of star-forming galaxies, "BX" galaxies at ⟨z⟩ = 2.20 ± 0.32 and "BM" galaxies at ⟨z⟩ = 1.70 ± 0.34. In seven survey fields we have spectroscopically confirmed 749 of the former and 114 of the latter. Interlopers (defined as objects at z < 1) account for less than 10% of the photometric candidates, and the fraction of faint active galactic nuclei is ~3% in the combined BX/BM sample. Deep near-IR photometry of a subset of the BX sample indicates that, compared with a sample of similarly UV-selected galaxies at z ~ 3, the z ~ 2 galaxies are on average significantly redder in (ℛ-Ks), indicating longer star formation histories, increased reddening by dust, or both. Using near-IR Hα spectra of a subset of BX/BM galaxies to define the galaxies' systemic redshifts, we show that the galactic-scale winds that are a feature of star-forming galaxies at z ~ 3 are also common at later epochs and have similar bulk outflow speeds of 200-300 km s-1. We illustrate with examples the information that can be deduced on the stellar populations, metallicities, and kinematics of redshift desert galaxies from easily accessible rest-frame far-UV and rest-frame optical spectra. Far from being hostile to observations, the universe at z ~ 2 is uniquely suited to providing information on the astrophysics of star-forming galaxies and the intergalactic medium, and the relationship between the two.

[1]  C. Steidel,et al.  Star-Forming Galaxies in the 'Redshift Desert' , 2004, astro-ph/0401061.

[2]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[3]  Max Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[4]  C. Prieto,et al.  Line formation in solar granulation IV. (O I), O I and OH lines and the photospheric O abundance , 2003, astro-ph/0312290.

[5]  Marcia J. Rieke,et al.  Evolution in the Colors of Lyman Break Galaxies from z ~ 4 to z ~ 3 , 2003, astro-ph/0310888.

[6]  A. Cimatti,et al.  Near-Infrared Bright Galaxies at z ≃ 2. Entering the Spheroid Formation Epoch? , 2003, astro-ph/0308456.

[7]  A. Fontana,et al.  The Assembly of Massive Galaxies from Near-Infrared Observations of the Hubble Deep Field-South , 2003, astro-ph/0307332.

[8]  Marijn Franx,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 5/14/03 THE REST-FRAME OPTICAL LUMINOSITY DENSITY, COLOR, AND STELLAR MASS DENSITY OF THE UNIVERSE FROM Z=0 TO Z=3 1 , 2003 .

[9]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[10]  I. Smail,et al.  A median redshift of 2.4 for galaxies bright at submillimetre wavelengths , 2003, Nature.

[11]  J. Cuby,et al.  Hα Spectroscopy of Galaxies at z > 2: Kinematics and Star Formation , 2003, astro-ph/0303392.

[12]  V. Springel,et al.  Black Hole Growth and Activity in a Λ Cold Dark Matter Universe , 2003, astro-ph/0301586.

[13]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[14]  Henry C. Ferguson,et al.  The Evolution of the Global Stellar Mass Density at 0 < z < 3 , 2002, astro-ph/0212242.

[15]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[16]  J. Kneib,et al.  Physical properties of two low-luminosity z 1.9 galaxies behind the lensing cluster AC 114 ⋆ , 2002, astro-ph/0210547.

[17]  C. Esteban,et al.  Optical Recombination Lines of Heavy Elements in Giant Extragalactic H II Regions , 2002, astro-ph/0208313.

[18]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[19]  C. Leitherer,et al.  Ultraviolet Spectra of Star-forming Galaxies with Time-dependent Dust Obscuration , 2002 .

[20]  A. Cimatti,et al.  The K20 survey - IV. The redshift distribution of $K_{\rm s}<20$ galaxies: A test of galaxy formation models , 2002, astro-ph/0207191.

[21]  M. Giavalisco,et al.  The Population of Faint Optically Selected Active Galactic Nuclei at z ~ 3 , 2002, astro-ph/0205142.

[22]  C. Steidel,et al.  New Observations of the Interstellar Medium in the Lyman Break Galaxy MS 1512–cB58 , 2001, astro-ph/0110637.

[23]  Cambridge,et al.  New Light on the Search for Low-Metallicity Galaxies , 2001, astro-ph/0110356.

[24]  M. Giavalisco,et al.  The Rest-Frame Optical Properties of z ≃ 3 Galaxies , 2001, astro-ph/0107324.

[25]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[26]  C. Leitherer,et al.  Ultraviolet Line Spectra of Metal-poor Star-forming Galaxies , 2000, astro-ph/0012358.

[27]  Norman L. Thomas,et al.  UV-shifted durable silver coating for astronomical mirrors , 2000, Astronomical Telescopes and Instrumentation.

[28]  J. Graham,et al.  Measurement of [O III] Emission in Lyman-Break Galaxies , 2000, astro-ph/0005254.

[29]  C. Leitherer,et al.  B Stars as a Diagnostic of Star Formation at Low and High Redshift , 1999, astro-ph/9909513.

[30]  M. Giavalisco,et al.  The Ultraviolet Spectrum of MS 1512–cB58: An Insight into Lyman-Break Galaxies , 1999, astro-ph/9908007.

[31]  Denis Foo Kune,et al.  Starburst99: Synthesis Models for Galaxies with Active Star Formation , 1999, astro-ph/9902334.

[32]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[33]  Judith G. Cohen,et al.  Caltech Faint Galaxy Redshift Survey. VIII. Analysis of the Field J0053+1234 , 1998, astro-ph/9809067.

[34]  David W. Hogg,et al.  Caltech Faint Galaxy Redshift Survey. VII. Data Analysis Techniques and Redshifts in the Field J0053+1234 , 1998, astro-ph/9809066.

[35]  James E. Larkin,et al.  Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope , 1998, Astronomical Telescopes and Instrumentation.

[36]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[37]  Judith G. Cohen,et al.  Blue channel of the Keck low-resolution imaging spectrometer , 1998, Astronomical Telescopes and Instrumentation.

[38]  C. Esteban,et al.  Chemical composition of the Orion nebula derived from echelle spectrophotometry , 1998 .

[39]  R. J. Brunner,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997 .

[40]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[41]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[42]  N. R. Walborn,et al.  International Ultraviolet Explorer atlas of B-type spectra from 1200 to 1900 Å. , 1985 .

[43]  N. Walborn,et al.  Ultraviolet spectral morphology of the O stars. III - The ON and OC stars , 1985 .

[44]  E. Salpeter The Luminosity function and stellar evolution , 1955 .