Alternatives to Target Entropy and Alpha Angle in SAR Polarimetry

The purpose of this paper is to discuss two polarimetric parameters which are widely used in synthetic aperture radar (SAR) polarimetry, namely, target entropy and alpha angle. We propose alternative parameters based on our analysis on how they are connected to covariance matrix similarity invariants and how they can be physically interpreted in optical polarimetry. The proposed alternatives can be computed by a fairly simple algorithm and even by the use of software without complex mathematics abilities. As an example, a NASA/Jet Propulsion Laboratory Airborne SAR L-band image of the San Francisco Bay is used to compare the proposed parameter schemes with the original entropy and alpha. A coherent rationale for these alternative parameters is formulated in order to provide insight to polarimetric parameter interpretation.

[1]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[2]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[3]  Pratibha Mishra,et al.  Advanced Engineering Mathematics , 2013 .

[4]  J. Gil Characteristic properties of Mueller matrices. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  R. Chipman Depolarization index and the average degree of polarization. , 2005, Applied optics.

[6]  E.K. Colin Polarimetric optical tools and decompositions applied to SAR images , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[7]  S. Cloude Uniqueness of Target Decomposition Theorems in Radar Polarimetry , 1992 .

[8]  E. Kreyszig,et al.  Advanced Engineering Mathematics. , 1974 .

[9]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[10]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[11]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[12]  J.-C. Souyris,et al.  Synoptic Representation of the Polarimetric Information , 2000 .

[13]  Wu Yirong,et al.  An Improved Cloude-Pottier Decomposition Using H/α/SPAN and Complex Wishart Classifier for Polarimetric SAR Classification , 2006, 2006 CIE International Conference on Radar.

[14]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[15]  M. Hallikainen,et al.  A novel approach in polarimetric covariance matrix eigendecomposition , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[16]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  Jong-Sen Lee,et al.  Unsupervised classification using polarimetric decomposition and complex Wishart classifier , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  Diana M. Hayes Error propagation in decomposition of Mueller matrices , 1997, Optics & Photonics.

[20]  S.R. Cloude,et al.  On the proper polarimetric scattering matrix formulation of the forward propagation versus backscattering radar systems description , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[21]  Jaan Praks,et al.  Combining High Resolution and Low resolution Information in Synoptic representation of Fully Polarimetric SAR Images , 2005 .