A conservative semi-Lagrangian HWENO method for the Vlasov equation
暂无分享,去创建一个
[1] Blanca Ayuso de Dios,et al. DISCONTINUOUS GALERKIN METHODS FOR THE MULTI-DIMENSIONAL VLASOV–POISSON PROBLEM , 2012 .
[2] P. J. Morrison,et al. A discontinuous Galerkin method for the Vlasov-Poisson system , 2010, J. Comput. Phys..
[3] Chi-Wang Shu,et al. Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..
[4] Jun Zhu,et al. A class of the fourth order finite volume Hermite weighted essentially non-oscillatory schemes , 2008 .
[5] L. Gardner,et al. A finite element code for the simulation of one-dimensional Vlasov plasmas I. Theory , 1988 .
[6] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[7] Chi-Wang Shu,et al. Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow , 2011, J. Comput. Phys..
[8] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[9] E. G. Evstatiev,et al. Variational formulation of particle algorithms for kinetic E&M plasma simulations , 2012, 2016 IEEE International Conference on Plasma Science (ICOPS).
[10] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[11] Jianxian Qiu,et al. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .
[12] Chang Yang,et al. Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations , 2013, J. Comput. Phys..
[13] David C. Seal,et al. A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..
[14] Chi-Wang Shu,et al. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..
[15] L. Gardner,et al. A finite element code for the simulation of one-dimensional Vlasov plasmas. II.Applications , 1988 .
[16] Takayuki Umeda,et al. A conservative and non-oscillatory scheme for Vlasov code simulations , 2008 .
[17] Andrew J. Christlieb,et al. A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..
[18] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[19] T. Yabe,et al. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .
[20] Jan S. Hesthaven,et al. High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids , 2006, J. Comput. Phys..
[21] Piet Hut,et al. A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.
[22] Wei Guo,et al. Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation , 2013, J. Comput. Phys..
[23] Yan Guo,et al. Numerical study on Landau damping , 2001 .
[24] Zhengfu Xu,et al. High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation , 2013, J. Comput. Phys..
[25] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[26] T. Yabe,et al. The constrained interpolation profile method for multiphase analysis , 2001 .
[27] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[28] Jianxian Qiu,et al. Finite Difference Hermite WENO Schemes for Hyperbolic Conservation Laws , 2014, Journal of Scientific Computing.
[29] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[30] Nicolas Besse. Convergence of a High-Order Semi-Lagrangian Scheme with Propagation of Gradients for the One-Dimensional Vlasov-Poisson System , 2008, SIAM J. Numer. Anal..
[31] Scott E. Parker,et al. Multi-scale particle-in-cell plasma simulation , 1991 .
[32] Jing-Mei Qiu,et al. Conservative Semi-Lagrangian Finite Difference WENO Formulations with Applications to the Vlasov Equation , 2011 .
[33] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[34] J. N. Leboeuf,et al. Implicit particle simulation of magnetized plasmas , 1983 .
[35] Yingda Cheng,et al. Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov–Poisson systems , 2012, J. Sci. Comput..
[36] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[37] José A. Carrillo,et al. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system , 2011 .
[38] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[39] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .