Axion dark matter detection by superconducting resonant frequency conversion

[1]  M. Tobar,et al.  Upconversion Loop Oscillator Axion Detection Experiment: A Precision Frequency Interferometric Axion Dark Matter Search with a Cylindrical Microwave Cavity. , 2019, Physical review letters.

[2]  Gary P. Centers,et al.  Stochastic fluctuations of bosonic dark matter , 2019, Nature Communications.

[3]  R. Lasenby Microwave cavity searches for low-frequency axion dark matter , 2019, 1912.11056.

[4]  JiJi Fan,et al.  Dynamical axion misalignment with small instantons , 2019, Journal of High Energy Physics.

[5]  D. Martynov,et al.  Quantum-enhanced interferometry for axion searches , 2019, 1911.00429.

[6]  M. Dolan,et al.  Dark matter targets for axionlike particle searches , 2019, Physical Review D.

[7]  F. Wilczek,et al.  Tunable Axion Plasma Haloscopes. , 2019, Physical review letters.

[8]  V. Narayan,et al.  Axion production and detection with superconducting rf cavities , 2019, Physical Review D.

[9]  K. Irwin,et al.  Optimal Electromagnetic Searches for Axion and Hidden-Photon Dark Matter , 2019, 1904.05806.

[10]  Y. Soreq,et al.  Probing Axionlike Particles and the Axiverse with Superconducting Radio-Frequency Cavities. , 2019, Physical review letters.

[11]  T. Peterson,et al.  Role of magnetic flux expulsion to reach Q0>3×1010 in superconducting rf cryomodules , 2018, Physical Review Accelerators and Beams.

[12]  M. Evans,et al.  Searching for axion dark matter with birefringent cavities , 2018, Physical Review D.

[13]  M. Tobar,et al.  Axion detection with precision frequency metrology , 2018, Physics of the Dark Universe.

[14]  National Radio Astronomy Observatory,et al.  Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter. , 2018, Physical review letters.

[15]  P. Graham,et al.  Stochastic axion scenario , 2018, Physical Review D.

[16]  L. Rosenberg,et al.  Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. , 2018, Physical review letters.

[17]  R. Lasenby,et al.  Axion and hidden photon dark matter detection with multilayer optical haloscopes , 2018, Physical Review D.

[18]  R. Maruyama,et al.  Results from phase 1 of the HAYSTAC microwave cavity axion experiment , 2018, 1803.03690.

[19]  K. Irwin,et al.  Fundamental Limits of Electromagnetic Axion and Hidden-Photon Dark Matter Searches: Part I - The Quantum Limit , 2018 .

[20]  B. Safdi,et al.  Revealing the dark matter halo with axion direct detection , 2017, Physical Review D.

[21]  J. Lewandowski,et al.  Development for a supercompact X -band pulse compression system and its application at SLAC , 2017 .

[22]  W. Xue,et al.  Opening up the QCD axion window , 2017, Journal of High Energy Physics.

[23]  B. Acharya,et al.  Spectrum of the axion dark sector , 2017, 1706.03236.

[24]  M. Tobar,et al.  The ORGAN Experiment: An axion haloscope above 15 GHz , 2017, 1706.00209.

[25]  M. J. Pivovaroff,et al.  New CAST limit on the axion–photon interaction , 2017, Nature Physics.

[26]  B. Majorovits,et al.  Dielectric Haloscopes: A New Way to Detect Axion Dark Matter. , 2016, Physical review letters.

[27]  S. Lamoreaux,et al.  First Results from a Microwave Cavity Axion Search at 24  μeV. , 2016, Physical review letters.

[28]  Z. Fodor,et al.  Calculation of the axion mass based on high-temperature lattice quantum chromodynamics , 2016, Nature.

[29]  M. Razzano,et al.  Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope. , 2016, Physical review letters.

[30]  B. Safdi,et al.  Broadband and Resonant Approaches to Axion Dark Matter Detection. , 2016, Physical review letters.

[31]  Javier Pardo Vega,et al.  The QCD axion, precisely , 2015, 1511.02867.

[32]  E. Gazis,et al.  New solar axion search using the CERN Axion Solar Telescope with He-4 filling , 2015 .

[33]  S. Davidson Axions: Bose Einstein Condensate or Classical Field? , 2014, 1405.1139.

[34]  A. Romanenko,et al.  Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG , 2014, 1410.7877.

[35]  T. Fischer,et al.  Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles , 2014, 1410.3747.

[36]  Jon H. Shirley,et al.  First accuracy evaluation of NIST-F2 , 2014 .

[37]  G. Bowden,et al.  Experimental demonstration of a tunable microwave undulator. , 2014, Physical review letters.

[38]  F. Haug,et al.  Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap. , 2014, Physical review letters.

[39]  D. Tanner,et al.  Proposal for axion dark matter detection using an LC circuit. , 2013, Physical review letters.

[40]  M. V. Fernandes,et al.  Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155−304 energy spectrum , 2013, 1311.3148.

[41]  Dmitry Budker,et al.  Proposal for a Cosmic Axion Spin Precession Experiment (CASPEr) , 2013, 1306.6089.

[42]  F. Haug,et al.  CAST search for sub-eV mass solar axions with 3He buffer gas , 2011, 1106.3919.

[43]  S. Girvin,et al.  Introduction to quantum noise, measurement, and amplification , 2008, 0810.4729.

[44]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[45]  P. Sikivie,et al.  Bose-Einstein condensation of dark matter axions. , 2009, Physical review letters.

[46]  E. Rubiola,et al.  Phase Noise and Frequency Stability in Oscillators , 2008 .

[47]  H. Padamsee,et al.  IMPROVEMENTS IN FIELD EMISSION: A STATISTICAL MODEL FOR ELECTROPOLISHED BAKED CAVITIES , 2008 .

[48]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[49]  V. Pierro,et al.  Microwave apparatus for gravitational waves observation , 2005, gr-qc/0502054.

[50]  A. Clerk Quantum-limited position detection and amplification: A linear response perspective , 2004, cond-mat/0406536.

[51]  National Radio Astronomy Observatory,et al.  An improved RF cavity search for halo axions , 2003, astro-ph/0310042.

[52]  A. Chincarini,et al.  A detector of gravitational waves based on coupled microwave cavities , 2002, gr-qc/0203024.

[53]  G. Gemme,et al.  A detector of small harmonic displacements based on two coupled microwave cavities , 2001, gr-qc/0103006.

[54]  M. Decowski,et al.  A Radio Telescope Search for Axions , 2000, astro-ph/0006310.

[55]  H. Padamsee,et al.  RF superconductivity for accelerators , 1998 .

[56]  S. Ramandurai Stars as laboratories for fundamental physics , 1996 .

[57]  D. Tanner,et al.  Results from a search for cosmic axions. , 1990, Physical review. D, Particles and fields.

[58]  Moskowitz,et al.  Results of a laboratory search for cosmic axions and other weakly coupled light particles. , 1989, Physical review. D, Particles and fields.

[59]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[60]  Moskowitz,et al.  Limits on the abundance and coupling of cosmic axions at 4.5 , 1987, Physical review letters.

[61]  Moody,et al.  Calculations for cosmic axion detection. , 1985, Physical review letters.

[62]  A. Melissinos,et al.  Observation of 4×10−17 cm harmonic displacement using a 10 GHz superconducting parametric converter , 1984 .

[63]  P. Sikivie Experimental Tests of the "INVISIBLE" Axion , 1983 .

[64]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[65]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[66]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[67]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[68]  Michael Dine,et al.  A Simple Solution to the Strong CP Problem with a Harmless Axion , 1981 .

[69]  A. Vainshtein,et al.  Can Confinement Ensure Natural CP Invariance of Strong Interactions , 1980 .

[70]  A. P. Zhitnitskii Possible suppression of axion-hadron interactions , 1980 .

[71]  A. Zhitnitsky On Possible Suppression of the Axion Hadron Interactions. (In Russian) , 1980 .

[72]  Jihn E. Kim Weak Interaction Singlet and Strong CP Invariance , 1979 .

[73]  F. Pegoraro,et al.  On the operation of a tunable electromagnetic detector for gravitational waves , 1978 .

[74]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[75]  S. Weinberg A new light boson , 1978 .

[76]  G. A. Loew,et al.  SLED: A Method of Doubling SLAC's Energy , 1974 .

[77]  P.J.B. Clarricoats,et al.  Propagation and radiation behaviour of corrugated feeds , 1972 .

[78]  P.J.B. Clarricoats,et al.  Propagation and radiation behaviour of corrugated feeds. Part 1: Corrugated-waveguide feed , 1971 .

[79]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[80]  R. Dicke The measurement of thermal radiation at microwave frequencies. , 1946, The Review of scientific instruments.