Deterministic global optimization of the design of a geothermal organic rankine cycle

Abstract Herein, a framework for deterministic global optimization of process flowsheets is adapted to the design of an organic Rankine cycle for geothermal power generation. A case study using isobutane as working fluid is considered for the optimal sizing of components and selection of operating conditions at different ambient temperatures. The framework can provide the global optimum in reasonable calculation times within tight tolerances. In contrast, most local solvers applied are found to be inadequate. The CPU times are substantially smaller compared to a state-of-the-art global solver. For the case considered, recuperation can increase net power output but not necessarily economics.

[1]  Arne Stolbjerg Drud,et al.  CONOPT - A Large-Scale GRG Code , 1994, INFORMS J. Comput..

[2]  José Luz Silveira,et al.  Thermoeconomic analysis method for optimization of combined heat and power systems—part II , 2003 .

[3]  Matthew D. Stuber,et al.  Convex and concave relaxations of implicit functions , 2015, Optim. Methods Softw..

[4]  W. Worek,et al.  Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources , 2007 .

[5]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1 | NIST , 2013 .

[6]  I. D. L. Bogle,et al.  Global optimization of modular process flowsheets , 2000 .

[7]  Yiping Dai,et al.  Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm , 2013 .

[8]  Alexander Mitsos,et al.  Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations , 2017, Journal of Global Optimization.

[9]  Alexander Mitsos,et al.  Modeling and optimization of a binary geothermal power plant , 2013 .

[10]  D. Brüggemann,et al.  Exergy based fluid selection for a geothermal Organic Rankine Cycle for combined heat and power generation , 2010 .

[11]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[12]  N. Lai,et al.  Working fluids for high-temperature organic Rankine cycles , 2007 .

[13]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[14]  Elysia J. Sheu,et al.  Hybrid solar-geothermal power generation: Optimal retrofitting , 2014 .

[15]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[16]  V. Stefánsson Investment cost for geothermal power plants , 2002 .

[17]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[18]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[19]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[20]  Dieter Kraft,et al.  Algorithm 733: TOMP–Fortran modules for optimal control calculations , 1994, TOMS.

[21]  John J.J. Chen Comments on improvements on a replacement for the logarithmic mean , 1987 .