A Note on Lower Bounds for Colourful Simplicial Depth

The colourful simplicial depth problem in dimension d is to find a configuration of (d+1) sets of (d+1) points such that the origin is contained in the convex hull of each set, or colour, but contained in a minimal number of colourful simplices generated by taking one point from each set. A construction attaining d2 + 1 simplices is known, and is conjectured to be minimal. This has been confirmed up to d = 3, however the best known lower bound for d ≥ 4 is ⌈(d+1)2 /2 ⌉. In this note, we use a branching strategy to improve the lower bound in dimension 4 from 13 to 14.

[1]  Imre Bárány,et al.  A generalization of carathéodory's theorem , 1982, Discret. Math..

[2]  Imre Ba´ra´ny,et al.  Quadratically Many Colorful Simplices , 2007 .

[3]  Tamon Stephen,et al.  Colourful Simplicial Depth , 2006, Discret. Comput. Geom..

[4]  Greg Aloupis,et al.  Geometric Measures of Data Depth , 2022 .

[5]  Jirí Matousek,et al.  Quadratically Many Colorful Simplices , 2007, SIAM J. Discret. Math..

[6]  Csaba D. Tóth,et al.  The union of colorful simplices spanned by a colored point set , 2010, Comput. Geom..

[7]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[8]  Tamon Stephen,et al.  More Colourful Simplices , 2010, Discret. Comput. Geom..

[9]  Jirí Matousek,et al.  On Gromov’s Method of Selecting Heavily Covered Points , 2011, Discret. Comput. Geom..

[10]  Jean-Sébastien Sereni,et al.  A New Lower Bound Based on Gromov’s Method of Selecting Heavily Covered Points , 2012, Discret. Comput. Geom..

[11]  Tamon Stephen,et al.  A quadratic lower bound for colourful simplicial depth , 2008, J. Comb. Optim..

[12]  Imre Bárány,et al.  Colourful Linear Programming and its Relatives , 1997, Math. Oper. Res..

[13]  Tamon Stephen,et al.  Computational Lower Bounds for Colourful Simplicial Depth , 2012, ArXiv.

[14]  Frédéric Meunier,et al.  A Combinatorial Approach to Colourful Simplicial Depth , 2014, SIAM J. Discret. Math..

[15]  Roman N. Karasev,et al.  A Simpler Proof of the Boros–Füredi–Bárány–Pach–Gromov Theorem , 2010, Discret. Comput. Geom..

[16]  Tamon Stephen,et al.  Small Octahedral Systems , 2011, CCCG.

[17]  Andrea Szalavetz,et al.  Hungarian Academy of Sciences , 1952, Nature.

[18]  Cortical Explorer Award: Tamas Freund. Department of Functional Neuroanatomy, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary. , 1991, Cerebral cortex.

[19]  Regina Y. Liu On a Notion of Data Depth Based on Random Simplices , 1990 .

[20]  Tamon Stephen,et al.  The colourful feasibility problem , 2008, Discret. Appl. Math..