The Conformational Plasticity of Protein Kinases

[1]  Susan S. Taylor,et al.  Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase. , 2002, Journal of molecular biology.

[2]  T. Pawson,et al.  Structural Basis for Autoinhibition of the EphB2 Receptor Tyrosine Kinase by the Unphosphorylated Juxtamembrane Region , 2001, Cell.

[3]  J Kuriyan,et al.  The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. , 2001, Molecular cell.

[4]  Giulio Superti-Furga,et al.  Dynamic Coupling between the SH2 and SH3 Domains of c-Src and Hck Underlies Their Inactivation by C-Terminal Tyrosine Phosphorylation , 2001, Cell.

[5]  C. Sawyers,et al.  Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. , 2001, The New England journal of medicine.

[6]  M. Yaffe,et al.  Phosphoserine/threonine-binding domains. , 2001, Current opinion in cell biology.

[7]  D E Wemmer,et al.  Two-state allosteric behavior in a single-domain signaling protein. , 2001, Science.

[8]  E. Pasquale,et al.  Eph receptors and ephrin ligands: embryogenesis to tumorigenesis , 2000, Oncogene.

[9]  D. Durocher,et al.  The molecular basis of FHA domain:phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. , 2000, Molecular cell.

[10]  P. Seeburg,et al.  Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. , 2000, Science.

[11]  Wange Lu,et al.  Structure of PAK1 in an Autoinhibited Conformation Reveals a Multistage Activation Switch , 2000, Cell.

[12]  G. Superti-Furga,et al.  Crosstalk between the catalytic and regulatory domains allows bidirectional regulation of Src , 2000, Nature Structural Biology.

[13]  M. R. Adams,et al.  Comparative genomics of the eukaryotes. , 2000, Science.

[14]  Michael K. Rosen,et al.  Autoinhibition and activation mechanisms of the Wiskott–Aldrich syndrome protein , 2000, Nature.

[15]  J. Kuriyan,et al.  Reciprocal regulation of Hck activity by phosphorylation of Tyr(527) and Tyr(416). Effect of introducing a high affinity intramolecular SH2 ligand. , 2000, The Journal of biological chemistry.

[16]  B. Kemp,et al.  Active site-directed protein regulation , 1999, Nature.

[17]  K. Siminovitch,et al.  Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott–Aldrich syndrome’ protein , 1999, Nature.

[18]  J. Kuriyan,et al.  Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. , 1999, Molecular cell.

[19]  S. Harrison,et al.  Crystal structures of c-Src reveal features of its autoinhibitory mechanism. , 1999, Molecular cell.

[20]  Morgan Huse,et al.  Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12 , 1999, Cell.

[21]  Paul Young,et al.  Structural basis for activation of the titin kinase domain during myofibrillogenesis , 1998, Nature.

[22]  E. Goldsmith,et al.  Structural basis of inhibitor selectivity in MAP kinases. , 1998, Structure.

[23]  S. Hubbard,et al.  Autoregulatory Mechanisms in Protein-tyrosine Kinases* , 1998, The Journal of Biological Chemistry.

[24]  E. Goldsmith,et al.  Phosphorylation of the MAP Kinase ERK2 Promotes Its Homodimerization and Nuclear Translocation , 1998, Cell.

[25]  S. Hubbard Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog , 1997, The EMBO journal.

[26]  Elizabeth J. Goldsmith,et al.  Activation Mechanism of the MAP Kinase ERK2 by Dual Phosphorylation , 1997, Cell.

[27]  Jürg Zimmermann,et al.  Potent and Selective Inhibitors of the AbL-Kinase: Phenylaminopyrimidine (PAP) Derivatives. , 1997 .

[28]  S. Hubbard,et al.  Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. , 1997, Science.

[29]  J. Kuriyan,et al.  Activation of the Sire-family tyrosine kinase Hck by SH3 domain displacement , 1997, Nature.

[30]  John Kuriyan,et al.  Crystal structure of the Src family tyrosine kinase Hck , 1997, Nature.

[31]  Michael J. Eck,et al.  Three-dimensional structure of the tyrosine kinase c-Src , 1997, Nature.

[32]  Jürg Zimmermann,et al.  Potent and selective inhibitors of the Abl-kinase: phenylamino-pyrimidine (PAP) derivatives , 1997 .

[33]  Hiroto Yamaguchi,et al.  Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation , 1996, Nature.

[34]  P. Jeffrey,et al.  Structural basis of cyclin-dependent kinase activation by phosphorylation , 1996, Nature Structural Biology.

[35]  L. Johnson,et al.  Active and Inactive Protein Kinases: Structural Basis for Regulation , 1996, Cell.

[36]  A. Nairn,et al.  Structural Basis for the Autoinhibition of Calcium/Calmodulin-Dependent Protein Kinase I , 1996, Cell.

[37]  Kornelia Polyak,et al.  Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex , 1995, Nature.

[38]  J. Massagué,et al.  GS domain mutations that constitutively activate T beta R‐I, the downstream signaling component in the TGF‐beta receptor complex. , 1995, The EMBO journal.

[39]  M Ikura,et al.  Molecular and structural basis of target recognition by calmodulin. , 1995, Annual review of biophysics and biomolecular structure.

[40]  S. Hubbard,et al.  Crystal structure of the tyrosine kinase domain of the human insulin receptor , 1994, Nature.

[41]  B. Kemp,et al.  Insights into autoregulation from the crystal structure of twitchin kinase , 1994, Nature.

[42]  Elizabeth J. Goldsmith,et al.  Atomic structure of the MAP kinase ERK2 at 2.3 Å resolution , 1994, Nature.

[43]  Sung-Hou Kim,et al.  Crystal structure of cyclin-dependent kinase 2 , 1993, Nature.

[44]  Nguyen-Huu Xuong,et al.  Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with magnesium-ATP and peptide inhibitor , 1993 .

[45]  R. Huber,et al.  Phosphotransferase and substrate binding mechanism of the cAMP‐dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI(5‐24). , 1993, The EMBO journal.

[46]  J. Zheng,et al.  Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. , 1991, Science.

[47]  A. Means,et al.  The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence. , 1987, The Journal of biological chemistry.

[48]  T. Hunter,et al.  An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates , 1979, Cell.

[49]  H. Varmus,et al.  Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein , 1978, Cell.