Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain

Abstract Based upon a nonlocal shell model accounting for the small-scale effects, the vibration characteristics of single-walled carbon nanotubes (SWCNTs) with different boundary conditions subjected to initial strain are studied in this paper. The set of governing equations of motion is numerically solved by a method that emerged from incorporating the radial point interpolation approximation within the framework of the generalized differential quadrature method. The effectiveness of the present nonlocal shell model is assessed by the molecular dynamics simulations as a benchmark of good accuracy. Accordingly, nonlocal parameters for clamped and cantilever SWCNTs with thicknesses of 0.066 and 0.34 nm are proposed due to the uncertainty that exists in defining nanotube wall thickness. The simulation results show that the resonant frequencies of SWCNTs are very sensitive to the initial strain, although small.

[1]  G. Kardomateas,et al.  Vibration Characteristics of Multiwalled Carbon Nanotubes Embedded in Elastic Media by a Nonlocal Elastic Shell Model , 2007 .

[2]  Philippe H. Geubelle,et al.  The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials , 2002 .

[3]  Yan Yan,et al.  Noncoaxial vibration of fluid-filled multi-walled carbon nanotubes , 2010 .

[4]  Vijay K. Varadan,et al.  Vibration of carbon nanotubes studied using nonlocal continuum mechanics , 2006 .

[5]  E. Aifantis,et al.  Vibrations of Double-Walled Carbon Nanotubes With Different Boundary Conditions Between Inner and Outer Tubes , 2008 .

[6]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[7]  P. Bernier,et al.  Elastic Properties of C and B x C y N z Composite Nanotubes , 1998 .

[8]  Boris I. Yakobson,et al.  High strain rate fracture and C-chain unraveling in carbon nanotubes , 1997 .

[9]  Xu Han,et al.  TRANSVERSE VIBRATIONS OF DOUBLE-WALLED CARBON NANOTUBES UNDER COMPRESSIVE AXIAL LOAD , 2005 .

[10]  Yong Ding,et al.  Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts , 2004, Science.

[11]  K. Bathe Finite Element Procedures , 1995 .

[12]  M. Aydogdu AXIAL VIBRATION OF THE NANORODS WITH THE NONLOCAL CONTINUUM ROD MODEL , 2009 .

[13]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[14]  Xiaoqiao He,et al.  Vibration of nonlocal Timoshenko beams , 2007 .

[15]  M. Aydogdu Vibration of multi-walled carbon nanotubes by generalized shear deformation theory , 2008 .

[16]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[17]  Tong-Yi Zhang Effects of static electric field on the fracture behavior of piezoelectric ceramics , 2002 .

[18]  A. Mioduchowski,et al.  VIBRATION OF AN EMBEDDED MULTIWALL CARBON NANOTUBE , 2003 .

[19]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[20]  V. Varadan,et al.  Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes , 2007 .

[21]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[22]  V. Varadan,et al.  Wave characteristics of carbon nanotubes , 2006 .

[23]  Jiangde Peng,et al.  Can a single-wall carbon nanotube be modeled as a thin shell? , 2008 .

[24]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[25]  Win-Jin Chang,et al.  Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model , 2009 .

[26]  A. Mioduchowski,et al.  Vibration and instability of carbon nanotubes conveying fluid , 2005 .

[27]  H. P. Lee,et al.  Application of nonlocal beam models for carbon nanotubes , 2007 .

[28]  Abdelouahed Tounsi,et al.  Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity , 2008 .

[29]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[30]  C. Wang,et al.  The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes , 2007, Nanotechnology.

[31]  John Peddieson,et al.  Application of nonlocal continuum models to nanotechnology , 2003 .

[32]  K. M. Liew,et al.  Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction , 2005 .

[33]  K. M. Liew,et al.  Analysis of wave propagation in carbon nanotubes via elastic shell theories , 2007 .

[34]  H. Rafii-Tabar,et al.  Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam , 2008, Nanotechnology.

[35]  Kaihui Liu,et al.  Vibration of multi-walled carbon nanotubes with initial axial loading , 2007 .

[36]  Aouni A. Lakis,et al.  GENERAL EQUATIONS OF ANISOTROPIC PLATES AND SHELLS INCLUDING TRANSVERSE SHEAR DEFORMATIONS, ROTARY INERTIA AND INITIAL CURVATURE EFFECTS , 2000 .

[37]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[38]  Quan Wang,et al.  Scale effect on wave propagation of double-walled carbon nanotubes , 2006 .

[39]  Paraskevas Papanikos,et al.  Finite element modeling of single-walled carbon nanotubes , 2005 .

[40]  H. Tsuda,et al.  Vibration analysis of embedded carbon nanotubes using wave propagation approach , 2006 .

[41]  Xiaoqiao He,et al.  ANALYSIS OF NONLINEAR VIBRATIONS OF DOUBLE-WALLED CARBON NANOTUBES CONVEYING FLUID , 2009 .

[42]  S. C. Pradhan,et al.  Small-scale effect on the vibration of nonuniform nanocantilever based on nonlocal elasticity theory , 2009 .

[43]  Lin Wang,et al.  The thermal effect on vibration and instability of carbon nanotubes conveying fluid , 2008 .

[44]  Reza Ansari,et al.  Application of HPM to the nonlinear vibrations of multiwalled carbon nanotubes , 2009 .

[45]  Isaac Elishakoff,et al.  Fundamental natural frequencies of double-walled carbon nanotubes , 2009 .

[46]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[47]  Philippe H. Geubelle,et al.  On the continuum modeling of carbon nanotubes , 2002 .

[48]  Chien Ming Wang,et al.  Assessment of timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics , 2009 .

[49]  Huajian Gao,et al.  Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials , 2002 .

[50]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[51]  Win-Jin Chang,et al.  Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium , 2009 .

[52]  Keh Chih Hwang,et al.  An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes , 2008 .

[53]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[54]  Yiming Fu,et al.  Analysis of nonlinear vibration for embedded carbon nanotubes , 2006 .

[55]  Chien Ming Wang,et al.  Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes , 2006 .

[56]  K. M. Liew,et al.  Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes , 2008 .

[57]  Tony Murmu,et al.  Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory , 2009 .

[58]  J. N. Reddy,et al.  Nonlocal theories for bending, buckling and vibration of beams , 2007 .

[59]  A. Tounsi,et al.  Scale effect on wave propagation of double-walled carbon nanotubes with initial axial loading , 2008, Nanotechnology.