Algorithms for Linear Time Series Analysis: With R Package

Our ltsa package implements the Durbin-Levinson and Trench algorithms and provides a general approach to the problems of fitting, forecasting and simulating linear time series models as well as fitting regression models with linear time series errors. For computational efficiency both algorithms are implemented in C and interfaced to R. Examples are given which illustrate the efficiency and accuracy of the algorithms. We provide a second package FGN which illustrates the use of the ltsa package with fractional Gaussian noise (FGN). It is hoped that the ltsa will provide a base for further time series software.

[1]  W. F. Trench An Algorithm for the Inversion of Finite Toeplitz Matrices , 1964 .

[2]  Victoria Zinde-Walsh,et al.  Some Exact Formulae for Autoregressive Moving Average Processes , 1988, Econometric Theory.

[3]  J. M. Damázio,et al.  The use of PAR(p) model in the stochastic dual dynamic programming optimization scheme used in the operation planning of the Brazilian hydropower system , 2005, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[4]  E. J. Hannan,et al.  On Limit Theorems for Quadratic Functions of Discrete Time Series , 1972 .

[5]  Paul Kabaila,et al.  An Optimality Property of the Least-Squares Estimate of the Parameter of the Spectrum of a Purely Nondeterministic Time Series , 1980 .

[6]  A. I. McLeod,et al.  Mean likelihood estimators , 2016, Stat. Comput..

[7]  Sheldon M. Ross,et al.  Stochastic Processes , 2018, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics.

[8]  M. M. Siddiqui On the Inversion of the Sample Covariance Matrix in a Stationary Autoregressive Process , 1958 .

[9]  Bruce D. McCullough,et al.  Bootstrapping forecast intervals: An application to AR(p) models , 1994 .

[10]  R. Royall Statistical Evidence: A Likelihood Paradigm , 1997 .

[11]  Ted Jaditz,et al.  Out-of-Sample Forecast Performance as a Test for Nonlinearity in Time Series , 1998 .

[12]  R. Davies,et al.  Tests for Hurst effect , 1987 .

[13]  Bengt Lindoff,et al.  Bootstrap control , 2006, IEEE Transactions on Automatic Control.

[14]  A. I. McLeod,et al.  Intervention Analysis in Water Resources , 1975 .

[15]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[16]  Frank R. Hampel,et al.  Is statistics too difficult? , 1998 .

[17]  A. I. McLeod,et al.  Power Computations for Intervention Analysis , 2005, Technometrics.

[18]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[19]  E. J. Hannan,et al.  THE CONVERGENCE OF AUTOCORRELATIONS AND AUTOREGRESSIONS1 , 1983 .

[20]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[21]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[22]  K. Hipel,et al.  Time series modelling of water resources and environmental systems , 1994 .

[23]  Keith W. Hipel,et al.  Forecasting monthly riverflow time series , 1985 .

[24]  A. I. McLeod,et al.  ARMA MODELLING WITH NON-GAUSSIAN INNOVATIONS , 1988 .

[25]  C. Hurvich,et al.  On the Correlation Matrix of the Discrete Fourier Transform and the Fast Solution of Large Toeplitz Systems for Long-Memory Time Series , 2004 .

[26]  Masanobu Taniguchi,et al.  On the Second Order Asymptotic Efficiency of Estimators of Gaussian ARMA Processes , 1983 .

[27]  N. Davies Multiple Time Series , 2005 .

[28]  Ying Zhang,et al.  Faster ARMA maximum likelihood estimation , 2008, Comput. Stat. Data Anal..

[29]  Charles R. Nelson,et al.  The Interpretation of R 2 in Autoregressive-Moving Average Time Series Models , 1976 .

[30]  C. Radhakrishna Rao,et al.  Efficient Estimates and Optimum Inference Procedures in Large Samples , 1962 .

[31]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[32]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[33]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[34]  J. Schmee Matrices with Applications in Statistics , 1982 .

[35]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[36]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[37]  Ron S. Dembo,et al.  Scenario optimization , 1991, Ann. Oper. Res..

[38]  Bruce D. McCullough,et al.  Diagnostic Checks in Time Series , 2005, Technometrics.

[39]  Nassim Nicholas Taleb,et al.  The Black Swan: The Impact of the Highly Improbable , 2007 .

[40]  Madhuri S. Mulekar,et al.  Statistical Inference in Science , 2001, Technometrics.

[41]  P. Bloomfield An exponential model for the spectrum of a scalar time series , 1973 .

[42]  Fallaw Sowell Maximum likelihood estimation of stationary univariate fractionally integrated time series models , 1992 .

[43]  Frederick W. Faltin,et al.  Statistical Control by Monitoring and Feedback Adjustment , 1999, Technometrics.