Inference and uncertainty quantification for noisy matrix completion

Significance Matrix completion finds numerous applications in data science, ranging from information retrieval to medical imaging. While substantial progress has been made in designing estimation algorithms, it remains unknown how to perform optimal statistical inference on the unknown matrix given the obtained estimates—a task at the core of modern decision making. We propose procedures to debias the popular convex and nonconvex estimators and derive distributional characterizations for the resulting debiased estimators. This distributional theory enables valid inference on the unknown matrix. Our procedures 1) yield optimal construction of confidence intervals for missing entries and 2) achieve optimal estimation accuracy in a sharp manner. Noisy matrix completion aims at estimating a low-rank matrix given only partial and corrupted entries. Despite remarkable progress in designing efficient estimation algorithms, it remains largely unclear how to assess the uncertainty of the obtained estimates and how to perform efficient statistical inference on the unknown matrix (e.g., constructing a valid and short confidence interval for an unseen entry). This paper takes a substantial step toward addressing such tasks. We develop a simple procedure to compensate for the bias of the widely used convex and nonconvex estimators. The resulting debiased estimators admit nearly precise nonasymptotic distributional characterizations, which in turn enable optimal construction of confidence intervals/regions for, say, the missing entries and the low-rank factors. Our inferential procedures do not require sample splitting, thus avoiding unnecessary loss of data efficiency. As a byproduct, we obtain a sharp characterization of the estimation accuracy of our debiased estimators in both rate and constant. Our debiased estimators are tractable algorithms that provably achieve full statistical efficiency.

[1]  Andrea J. Goldsmith,et al.  Exact and Stable Covariance Estimation From Quadratic Sampling via Convex Programming , 2013, IEEE Transactions on Information Theory.

[2]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[3]  Технология,et al.  National Climatic Data Center , 2011 .

[4]  Alexander Shapiro,et al.  Matrix Completion With Deterministic Pattern: A Geometric Perspective , 2018, IEEE Transactions on Signal Processing.

[5]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[6]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[7]  J. Robins,et al.  Double/Debiased Machine Learning for Treatment and Structural Parameters , 2017 .

[8]  Qiang Sun,et al.  Principal Component Analysis for Big Data , 2018, Wiley StatsRef: Statistics Reference Online.

[9]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[10]  Adi Shraibman,et al.  Rank, Trace-Norm and Max-Norm , 2005, COLT.

[11]  Adel Javanmard,et al.  Debiasing the lasso: Optimal sample size for Gaussian designs , 2015, The Annals of Statistics.

[12]  Chen Cheng,et al.  Asymmetry Helps: Eigenvalue and Eigenvector Analyses of Asymmetrically Perturbed Low-Rank Matrices , 2018, ArXiv.

[13]  Jianqing Fan,et al.  Robust Covariance Estimation for Approximate Factor Models. , 2016, Journal of econometrics.

[14]  G. Stewart On the Perturbation of Pseudo-Inverses, Projections and Linear Least Squares Problems , 1977 .

[15]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[16]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[17]  Yuxin Chen,et al.  Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview , 2018, IEEE Transactions on Signal Processing.

[18]  Xiaodong Li,et al.  Model-free Nonconvex Matrix Completion: Local Minima Analysis and Applications in Memory-efficient Kernel PCA , 2019, J. Mach. Learn. Res..

[19]  Yuxin Chen,et al.  Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems , 2015, NIPS.

[20]  Yuling Yan,et al.  Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization , 2019, SIAM J. Optim..

[21]  Dong Xia,et al.  Optimal estimation of low rank density matrices , 2015, J. Mach. Learn. Res..

[22]  Dong Xia,et al.  Confidence interval of singular vectors for high-dimensional and low-rank matrix regression , 2018, ArXiv.

[23]  Cun-Hui Zhang,et al.  Calibrated Elastic Regularization in Matrix Completion , 2012, NIPS.

[24]  L. Wasserman,et al.  HIGH DIMENSIONAL VARIABLE SELECTION. , 2007, Annals of statistics.

[25]  Wotao Yin,et al.  Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed 퓁q Minimization , 2013, SIAM J. Numer. Anal..

[26]  Yuxin Chen,et al.  Spectral Method and Regularized MLE Are Both Optimal for Top-$K$ Ranking , 2017, Annals of statistics.

[27]  Han Liu,et al.  A General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models , 2014, 1412.8765.

[28]  Jianqing Fan,et al.  DISTRIBUTED TESTING AND ESTIMATION UNDER SPARSE HIGH DIMENSIONAL MODELS. , 2018, Annals of statistics.

[29]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[30]  Sham M. Kakade,et al.  Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent , 2016, NIPS.

[31]  P. Bickel,et al.  On robust regression with high-dimensional predictors , 2013, Proceedings of the National Academy of Sciences.

[32]  Martin J. Wainwright,et al.  High-Dimensional Statistics , 2019 .

[33]  Pascal Sarda,et al.  Factor models and variable selection in high-dimensional regression analysis , 2011 .

[34]  Jana Janková,et al.  Honest confidence regions and optimality in high-dimensional precision matrix estimation , 2015, TEST.

[35]  Yin Zhang,et al.  Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.

[36]  G. Imbens,et al.  Approximate residual balancing: debiased inference of average treatment effects in high dimensions , 2016, 1604.07125.

[37]  Yuxin Chen,et al.  Implicit Regularization in Nonconvex Statistical Estimation: Gradient Descent Converges Linearly for Phase Retrieval, Matrix Completion, and Blind Deconvolution , 2017, Found. Comput. Math..

[38]  Zhaoran Wang,et al.  A Nonconvex Optimization Framework for Low Rank Matrix Estimation , 2015, NIPS.

[39]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[40]  R. Tibshirani,et al.  A SIGNIFICANCE TEST FOR THE LASSO. , 2013, Annals of statistics.

[41]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[42]  Xiaodong Li,et al.  Nonconvex Rectangular Matrix Completion via Gradient Descent without $\ell_{2,\infty}$ Regularization , 2019 .

[43]  Xiao Zhang,et al.  A Unified Computational and Statistical Framework for Nonconvex Low-rank Matrix Estimation , 2016, AISTATS.

[44]  Tengyu Ma,et al.  Matrix Completion has No Spurious Local Minimum , 2016, NIPS.

[45]  B. A. Schmitt Perturbation bounds for matrix square roots and pythagorean sums , 1992 .

[46]  Ji Chen,et al.  Nonconvex Rectangular Matrix Completion via Gradient Descent Without ℓ₂,∞ Regularization , 2020, IEEE Transactions on Information Theory.

[47]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[48]  Harrison H. Zhou,et al.  Asymptotic normality and optimalities in estimation of large Gaussian graphical models , 2013, 1309.6024.

[49]  Nathan Srebro,et al.  Concentration-Based Guarantees for Low-Rank Matrix Reconstruction , 2011, COLT.

[50]  Yuxin Chen,et al.  Gradient descent with random initialization: fast global convergence for nonconvex phase retrieval , 2018, Mathematical Programming.

[51]  Xiao Zhang,et al.  A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery , 2018, ICML.

[52]  Yuxin Chen,et al.  The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences , 2016, Communications on Pure and Applied Mathematics.

[53]  J. Pauly,et al.  Accelerating parameter mapping with a locally low rank constraint , 2015, Magnetic resonance in medicine.

[54]  V. Koltchinskii,et al.  Oracle inequalities in empirical risk minimization and sparse recovery problems , 2011 .

[55]  Sham M. Kakade,et al.  A tail inequality for quadratic forms of subgaussian random vectors , 2011, ArXiv.

[56]  Javad Lavaei,et al.  Sharp Restricted Isometry Bounds for the Inexistence of Spurious Local Minima in Nonconvex Matrix Recovery , 2019, J. Mach. Learn. Res..

[57]  P. Wedin Perturbation bounds in connection with singular value decomposition , 1972 .

[58]  Nathan Srebro,et al.  Learning with matrix factorizations , 2004 .

[59]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[60]  Felix Krahmer,et al.  On the Convex Geometry of Blind Deconvolution and Matrix Completion , 2019, Communications on Pure and Applied Mathematics.

[61]  Jianqing Fan,et al.  ENTRYWISE EIGENVECTOR ANALYSIS OF RANDOM MATRICES WITH LOW EXPECTED RANK. , 2017, Annals of statistics.

[62]  Adel Javanmard,et al.  Hypothesis Testing in High-Dimensional Regression Under the Gaussian Random Design Model: Asymptotic Theory , 2013, IEEE Transactions on Information Theory.

[63]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[64]  Massimo Fornasier,et al.  Low-rank Matrix Recovery via Iteratively Reweighted Least Squares Minimization , 2010, SIAM J. Optim..

[65]  Jianqing Fan,et al.  Asymptotic Theory of Eigenvectors for Large Random Matrices , 2019, 1902.06846.

[66]  Nathan Srebro,et al.  Fast maximum margin matrix factorization for collaborative prediction , 2005, ICML.

[67]  Cun-Hui Zhang,et al.  Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.

[68]  Adel Javanmard,et al.  Confidence intervals and hypothesis testing for high-dimensional regression , 2013, J. Mach. Learn. Res..

[69]  Justin K. Romberg,et al.  An Overview of Low-Rank Matrix Recovery From Incomplete Observations , 2016, IEEE Journal of Selected Topics in Signal Processing.

[70]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[71]  Tengyuan Liang,et al.  Geometric Inference for General High-Dimensional Linear Inverse Problems , 2014, 1404.4408.

[72]  Yudong Chen,et al.  Incoherence-Optimal Matrix Completion , 2013, IEEE Transactions on Information Theory.

[73]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[74]  Yuxin Chen,et al.  Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.

[75]  Yudong Chen,et al.  Leave-One-Out Approach for Matrix Completion: Primal and Dual Analysis , 2018, IEEE Transactions on Information Theory.

[76]  Tony F. Chan,et al.  Guarantees of Riemannian Optimization for Low Rank Matrix Recovery , 2015, SIAM J. Matrix Anal. Appl..

[77]  Sara van de Geer,et al.  De-biased sparse PCA: Inference and testing for eigenstructure of large covariance matrices , 2018, 1801.10567.

[78]  Yang Cao,et al.  Poisson Matrix Recovery and Completion , 2015, IEEE Transactions on Signal Processing.

[79]  R. A. Smith Matrix Equation $XA + BX = C$ , 1968 .

[80]  T. Tony Cai,et al.  Matrix completion via max-norm constrained optimization , 2013, ArXiv.

[81]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[82]  Dennis L. Sun,et al.  Exact post-selection inference, with application to the lasso , 2013, 1311.6238.

[83]  Zhi-Quan Luo,et al.  Guaranteed Matrix Completion via Non-Convex Factorization , 2014, IEEE Transactions on Information Theory.

[84]  Alexandra Carpentier,et al.  On signal detection and confidence sets for low rank inference problems , 2015, 1507.03829.

[85]  Peter Bühlmann,et al.  p-Values for High-Dimensional Regression , 2008, 0811.2177.

[86]  T. Tony Cai,et al.  Confidence intervals for high-dimensional linear regression: Minimax rates and adaptivity , 2015, 1506.05539.

[87]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[88]  Han Liu,et al.  A Unified Theory of Confidence Regions and Testing for High-Dimensional Estimating Equations , 2015, Statistical Science.

[89]  Javad Lavaei,et al.  No Spurious Solutions in Non-convex Matrix Sensing: Structure Compensates for Isometry , 2021, 2021 American Control Conference (ACC).

[90]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[91]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[92]  Peter Bühlmann,et al.  High-dimensional simultaneous inference with the bootstrap , 2016, 1606.03940.

[93]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[94]  Yi Zheng,et al.  No Spurious Local Minima in Nonconvex Low Rank Problems: A Unified Geometric Analysis , 2017, ICML.

[95]  Dmitriy Drusvyatskiy,et al.  Composite optimization for robust blind deconvolution , 2019, ArXiv.

[96]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[97]  Dong Xia Data-dependent Confidence Regions of Singular Subspaces , 2019, ArXiv.

[98]  S. Geer,et al.  Confidence intervals for high-dimensional inverse covariance estimation , 2014, 1403.6752.

[99]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[100]  S. Geer,et al.  On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.

[101]  T. Cai,et al.  Sparse PCA: Optimal rates and adaptive estimation , 2012, 1211.1309.

[102]  Wen-Xin Zhou,et al.  A max-norm constrained minimization approach to 1-bit matrix completion , 2013, J. Mach. Learn. Res..

[103]  Ewout van den Berg,et al.  1-Bit Matrix Completion , 2012, ArXiv.

[104]  A. Tsybakov,et al.  Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.

[105]  N. Meinshausen,et al.  High-Dimensional Inference: Confidence Intervals, $p$-Values and R-Software hdi , 2014, 1408.4026.

[106]  A. Carpentier,et al.  Constructing confidence sets for the matrix completion problem , 2017, 1704.02760.

[107]  Dmitriy Drusvyatskiy,et al.  Low-Rank Matrix Recovery with Composite Optimization: Good Conditioning and Rapid Convergence , 2019, Found. Comput. Math..

[108]  Yudong Chen,et al.  Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation: Recent Theory and Fast Algorithms via Convex and Nonconvex Optimization , 2018, IEEE Signal Processing Magazine.

[109]  R. Nickl,et al.  Uncertainty Quantification for Matrix Compressed Sensing and Quantum Tomography Problems , 2015, Progress in Probability.

[110]  Javad Lavaei,et al.  How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery? , 2018, NeurIPS.

[111]  Guang Cheng,et al.  Simultaneous Inference for High-Dimensional Linear Models , 2016, 1603.01295.

[112]  J. Bai,et al.  Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions , 2006 .

[113]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[114]  Noureddine El Karoui,et al.  On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators , 2018 .

[115]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[116]  Dong Xia Normal approximation and confidence region of singular subspaces , 2021, Electronic Journal of Statistics.

[117]  A. Belloni,et al.  Inference for High-Dimensional Sparse Econometric Models , 2011, 1201.0220.

[118]  John D. Lafferty,et al.  Convergence Analysis for Rectangular Matrix Completion Using Burer-Monteiro Factorization and Gradient Descent , 2016, ArXiv.

[119]  O. Klopp Noisy low-rank matrix completion with general sampling distribution , 2012, 1203.0108.

[120]  R. Nickl,et al.  Adaptive confidence sets for matrix completion , 2016, Bernoulli.

[121]  Feng Ruan,et al.  Solving (most) of a set of quadratic equalities: Composite optimization for robust phase retrieval , 2017, Information and Inference: A Journal of the IMA.

[122]  Junwei Lu,et al.  Inter-Subject Analysis: Inferring Sparse Interactions with Dense Intra-Graphs , 2017, 1709.07036.

[123]  Simon Mak,et al.  Active matrix completion with uncertainty quantification , 2017 .