Genotype–environment interaction for milk production of Gyr cattle in Brazil and Colombia

[1]  P. VanRaden,et al.  A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle , 2019, Front. Genet..

[2]  Xiaolei Liu,et al.  Factors Affecting the Accuracy of Genomic Selection for Agricultural Economic Traits in Maize, Cattle, and Pig Populations , 2019, Front. Genet..

[3]  Qin Zhang,et al.  Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach , 2019, Front. Genet..

[4]  M. Lund,et al.  A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds , 2018, PloS one.

[5]  R. Carvalheiro,et al.  Reaction norm for yearling weight in beef cattle using single-step genomic evaluation. , 2018, Journal of animal science.

[6]  M. A. Machado,et al.  Genotype by environment interaction in Brazilian Dairy Gir cattle , 2018 .

[7]  R. Ventura,et al.  Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle , 2018, BMC Genomics.

[8]  M. Stevanović,et al.  SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line , 2017, PloS one.

[9]  M. Goddard,et al.  Models for Genome × Environment Interaction: Examples in Livestock , 2016 .

[10]  Sarah C. Ayling,et al.  The Ensembl gene annotation system , 2016, Database J. Biol. Databases Curation.

[11]  F. Schenkel,et al.  Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle , 2016, BMC Genetics.

[12]  R. Snell,et al.  Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition , 2016, Scientific Reports.

[13]  W. M. Rauw,et al.  Genotype by environment interaction and breeding for robustness in livestock , 2015, Front. Genet..

[14]  R. S. Verneque,et al.  Genetic parameters for milk production traits and breeding goals for Gir dairy cattle in Brazil. , 2014, Genetics and molecular research : GMR.

[15]  R. J. Pereira,et al.  History, structure, and genetic diversity of Brazilian Gir cattle , 2014 .

[16]  G. Thaller,et al.  Genome-wide association analysis to identify genotype × environment interaction for milk protein yield and level of somatic cell score as environmental descriptors in German Holsteins. , 2013, Journal of dairy science.

[17]  A. B. Bignardi,et al.  Genotype by environment interaction and model comparison for growth traits of Santa Ines sheep. , 2013, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[18]  Hongyu Zhao,et al.  A Genome-Wide Association Study on Obesity and Obesity-Related Traits , 2011, PloS one.

[19]  M. Cerón-Muñoz,et al.  Genetic characterization of the Hartón del Valle, Angus, Brangus, Holstein, and Senepol cattle breeds in Colombia, using ten microsatellite markers , 2010 .

[20]  I Misztal,et al.  Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. , 2010, Journal of dairy science.

[21]  G. Rincón,et al.  Comparative Analysis Of Bovine Milk And Mammary Gland Transcriptome Using RNA-Seq , 2010 .

[22]  H. Soyeurt,et al.  Accessing genotype by environment interaction using within- and across-country test-day random regression sire models. , 2009, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[23]  I Misztal,et al.  Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. , 2009, Journal of dairy science.

[24]  P. VanRaden,et al.  Efficient methods to compute genomic predictions. , 2008, Journal of dairy science.

[25]  B. V. Leitón,et al.  Estimación de tendencias genéticas e interacción genotipo x ambiente en ganado lechero de Costa Rica , 2008 .

[26]  M. Calus,et al.  Genotype by environment interaction for somatic cell score across bulk milk somatic cell count and days in milk. , 2006, Journal of dairy science.

[27]  Bart De Moor,et al.  BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis , 2005, Bioinform..

[28]  H. Tonhati,et al.  INTERAÇÃO GENÓTIPO-AMBIENTE EM BOVINOS DA RAÇA HOLANDESA BRASILEIROS E COLOMBIANOS* GENOTYPE BY ENVIRONMENT INTERACTION IN BRAZILIAN AND COLOMBIAN , 2004 .

[29]  K A Weigel,et al.  Genotype x environment interaction for milk production in Guernsey cattle. , 2003, Journal of dairy science.

[30]  P. Visscher,et al.  Novel multilocus measure of linkage disequilibrium to estimate past effective population size. , 2003, Genome research.

[31]  J. Jensen,et al.  Genotype by Environment Interaction in Nordic Dairy Cattle Studied Using Reaction Norms , 2002 .

[32]  C. R. Lopes,et al.  Evaluation of nine microsatellite loci and misidentification paternity frequency in a population of Gyr breed bovines , 2002 .

[33]  K A Weigel,et al.  Characterization of dairy production systems in countries that participate in the International Bull Evaluation Service. , 2001, Journal of dairy science.

[34]  H. Grüneberg,et al.  Introduction to quantitative genetics , 1960 .

[35]  A. Robertson THE SAMPLING VARIANCE OF THE GENETIC CORRELATION COEFFICIENT , 1959 .