暂无分享,去创建一个
[1] Reinhold Schneider,et al. Convergence Results for Projected Line-Search Methods on Varieties of Low-Rank Matrices Via Łojasiewicz Inequality , 2014, SIAM J. Optim..
[2] Gitta Kutyniok,et al. 1 . 2 Sparsity : A Reasonable Assumption ? , 2012 .
[3] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[4] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[5] John J. Benedetto,et al. Applied and numerical harmonic analysis , 1997 .
[6] J. Suykens,et al. Nuclear Norms for Tensors and Their Use for Convex Multilinear Estimation , 2011 .
[7] Reinhold Schneider,et al. Tensor Spaces and Hierarchical Tensor Representations , 2014 .
[8] 慧 廣瀬. A Mathematical Introduction to Compressive Sensing , 2015 .
[9] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[10] T. Blumensath,et al. Iterative Thresholding for Sparse Approximations , 2008 .
[11] Nadia Kreimer,et al. A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation , 2012 .
[12] Jieping Ye,et al. Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..
[13] Mike E. Davies,et al. Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.
[14] Felix J. Herrmann,et al. Hierarchical Tucker Tensor Optimization - Applications to 4D Seismic Data Interpolation , 2013 .
[15] Christopher J. Hillar,et al. Most Tensor Problems Are NP-Hard , 2009, JACM.
[16] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[17] Yuanyuan Liu,et al. An Efficient Matrix Factorization Method for Tensor Completion , 2013, IEEE Signal Processing Letters.
[18] Enrico Carlini,et al. Ranks derived from multilinear maps , 2011 .
[19] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[20] Haobin Wang,et al. Multilayer formulation of the multiconfiguration time-dependent Hartree theory , 2003 .
[21] Massimiliano Pontil,et al. A New Convex Relaxation for Tensor Completion , 2013, NIPS.
[22] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[23] Wotao Yin,et al. Parallel matrix factorization for low-rank tensor completion , 2013, ArXiv.
[24] Wotao Yin,et al. A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion , 2013, SIAM J. Imaging Sci..
[25] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[26] M. Beck,et al. The multiconfiguration time-dependent Hartree (MCTDH) method: A highly efficient algorithm for propa , 1999 .
[27] Emmanuel J. Candès,et al. Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements , 2010, ArXiv.
[28] Reinhold Schneider,et al. Low rank tensor recovery via iterative hard thresholding , 2016, ArXiv.
[29] John Wright,et al. Provable Low-Rank Tensor Recovery , 2014 .
[30] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[31] B. Recht,et al. Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .
[32] Reinhold Schneider,et al. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..
[33] Bart Vandereycken,et al. Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..
[34] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[35] C. D. Silva. Hierarchical Tucker Tensor Optimization-Applications to Tensor Completion , 2013 .
[36] Eugene E. Tyrtyshnikov,et al. Algebraic Wavelet Transform via Quantics Tensor Train Decomposition , 2011, SIAM J. Sci. Comput..
[37] André Uschmajew,et al. On Local Convergence of Alternating Schemes for Optimization of Convex Problems in the Tensor Train Format , 2013, SIAM J. Numer. Anal..
[38] Artur Przelaskowski,et al. Reviews of "Cloud computing: automating the virtualized data center" (josyula, v., et al; 2012) and " compressed sensing: theory and applications" (eldar, y.c. and kutyniok, g.; 2012) [book reviews] , 2013, IEEE Communications Magazine.
[39] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[40] Bo Huang,et al. Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.
[41] Bart Vandereycken,et al. Low-rank tensor completion by Riemannian optimization , 2014 .
[42] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[43] Martin J. Mohlenkamp,et al. Multivariate Regression and Machine Learning with Sums of Separable Functions , 2009, SIAM J. Sci. Comput..
[44] Johan A. K. Suykens,et al. Learning with tensors: a framework based on convex optimization and spectral regularization , 2014, Machine Learning.
[45] F. Verstraete,et al. Post-matrix product state methods: To tangent space and beyond , 2013, 1305.1894.
[46] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[47] Wolfgang Hackbusch,et al. Numerical tensor calculus* , 2014, Acta Numerica.
[48] C. Harris. Problems in measuring change , 1965 .
[49] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[50] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[51] Antonio Falcó,et al. On Minimal Subspaces in Tensor Representations , 2012, Found. Comput. Math..
[52] Wolfgang Hackbusch,et al. Tensorisation of vectors and their efficient convolution , 2011, Numerische Mathematik.
[53] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[54] Harold Gulliksen,et al. Contributions to mathematical psychology , 1964 .
[55] J. Levin. Three-mode factor analysis. , 1965, Psychological bulletin.
[56] L. Tucker,et al. Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.
[57] Nickolay T. Trendafilov,et al. P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds , 2010, Found. Comput. Math..
[58] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[59] Antonio Falcó,et al. Geometric structures in tensor representations , 2013 .
[60] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[61] Ivan Oseledets,et al. A new tensor decomposition , 2009 .
[62] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[63] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[64] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[65] Tobias Jahnke,et al. On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.
[66] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[67] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[68] J. Landsberg. Tensors: Geometry and Applications , 2011 .
[69] Emmanuel J. Candès,et al. Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.
[70] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[71] Reinhold Schneider,et al. Tensor Product Approximation (DMRG) and Coupled Cluster method in Quantum Chemistry , 2013, 1310.2736.
[72] Shmuel Friedland,et al. The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors , 2012, Found. Comput. Math..
[73] Martin J. Mohlenkamp,et al. Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..
[74] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[75] Yin Zhang,et al. Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm , 2012, Mathematical Programming Computation.
[76] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[77] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[78] Jared Tanner,et al. Normalized Iterative Hard Thresholding for Matrix Completion , 2013, SIAM J. Sci. Comput..
[79] André Uschmajew,et al. Well-posedness of convex maximization problems on Stiefel manifolds and orthogonal tensor product approximations , 2010, Numerische Mathematik.
[80] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..