Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes.

Here we investigated the interactions between lectins and carbohydrates using field-effect transistor (FET) devices comprised of chemically converted graphene (CCG) and single-walled carbon nanotubes (SWNTs). Pyrene- and porphyrin-based glycoconjugates were functionalized noncovalently on the surface of CCG-FET and SWNT-FET devices, which were then treated with 2 μM nonspecific and specific lectins. In particular, three different lectins (PA-IL, PA-IIL, and ConA) and three carbohydrate epitopes (galactose, fucose, and mannose) were tested. The responses of 36 different devices were compared and rationalized using computer-aided models of carbon nanostructure/glycoconjugate interactions. Glycoconjugate surface coverage in addition to one-dimensional structures of SWNTs resulted in optimal lectin detection. Additionally, lectin titration data of SWNT- and CCG-based biosensors were used to calculate lectin dissociation constants (K(d)) and compare them to the values obtained from the isothermal titration microcalorimetry technique.

[1]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[2]  C. Richert,et al.  Isostable DNA. , 2007, Journal of the American Chemical Society.

[3]  L. Mahal,et al.  A One-Step Synthesis of Azide-Tagged Carbohydrates: Versatile ­Intermediates for Glycotechnology , 2006 .

[4]  A. Imberty,et al.  Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. , 2008, Journal of molecular biology.

[5]  J. Klein-Seetharaman,et al.  The enzymatic oxidation of graphene oxide. , 2011, ACS nano.

[6]  N Garber,et al.  On the specificity of the D-galactose-binding lectin (PA-I) of Pseudomonas aeruginosa and its strong binding to hydrophobic derivatives of D-galactose and thiogalactose. , 1992, Biochimica et biophysica acta.

[7]  A. Imberty,et al.  Microbial recognition of human cell surface glycoconjugates. , 2008, Current opinion in structural biology.

[8]  A. Imberty,et al.  Binding of different monosaccharides by lectin PA‐IIL from Pseudomonas aeruginosa: Thermodynamics data correlated with X‐ray structures , 2006, FEBS letters.

[9]  P. Ajayan,et al.  Noncovalent functionalization as an alternative to oxidative acid treatment of single wall carbon nanotubes with applications for polymer composites. , 2009, ACS nano.

[10]  M. Assali,et al.  Improved non-covalent biofunctionalization of multi-walled carbon nanotubes using carbohydrate amphiphiles with a butterfly-like polyaromatic tail , 2010 .

[11]  A. Imberty,et al.  AFM investigation of Pseudomonas aeruginosa lectin LecA (PA-IL) filaments induced by multivalent glycoclusters. , 2011, Chemical communications.

[12]  N. Sharon Carbohydrate-lectin interactions in infectious disease. , 1996, Advances in experimental medicine and biology.

[13]  G. Eda,et al.  Graphene oxide as a chemically tunable platform for optical applications. , 2010, Nature chemistry.

[14]  Anne Imberty,et al.  Nanoelectronic detection of lectin-carbohydrate interactions using carbon nanotubes. , 2011, Nano letters.

[15]  A. Imberty,et al.  Role of LecA and LecB Lectins in Pseudomonas aeruginosa-Induced Lung Injury and Effect of Carbohydrate Ligands , 2009, Infection and Immunity.

[16]  N. Gilboa-Garber Pseudomonas aeruginosa lectins. , 1982, Methods in enzymology.

[17]  P. J. Ollivier,et al.  Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations , 1999 .

[18]  Lain-Jong Li,et al.  Interfacing glycosylated carbon-nanotube-network devices with living cells to detect dynamic secretion of biomolecules. , 2009, Angewandte Chemie.

[19]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[20]  Carolyn R Bertozzi,et al.  Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. , 2008, Angewandte Chemie.

[21]  Alexander Star,et al.  Electronic Detection of Specific Protein Binding Using Nanotube FET Devices , 2003 .

[22]  J. Riu,et al.  Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. , 2009, Angewandte Chemie.

[23]  M. Meldal,et al.  Cu‐Catalyzed Azide—Alkyne Cycloaddition , 2008 .

[24]  Shun Mao,et al.  Specific Protein Detection Using Thermally Reduced Graphene Oxide Sheet Decorated with Gold Nanoparticle‐Antibody Conjugates , 2010, Advanced materials.

[25]  Ashok Mulchandani,et al.  Nanowire‐Based Electrochemical Biosensors , 2006 .

[26]  P. Schultz,et al.  Tailoring carbon nanotube surfaces with glyconanorings: new bionanomaterials with specific lectin affinity. , 2009, Chemical communications.

[27]  K. D. Hardman,et al.  Structure of concanavalin A at 2.4-A resolution. , 1972, Biochemistry.

[28]  M. Dantus,et al.  Imaging the Molecular Dimensions and Oligomerization of Proteins at Liquid/Solid Interfaces , 1998 .

[29]  R. Pieters Maximising multivalency effects in protein-carbohydrate interactions. , 2009, Organic & biomolecular chemistry.

[30]  H. Dai,et al.  PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. , 2009, Journal of the American Chemical Society.

[31]  A. Marra,et al.  Design of Triazole‐Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinities towards PA‐IL and RCA 120 by Using a DNA‐Based Glycoarray , 2009, Chembiochem : a European journal of chemical biology.

[32]  A. Imberty,et al.  Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates. , 2009, Chemistry.

[33]  N. Sharon,et al.  Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. , 1998, Chemical reviews.

[34]  Karl D. Hardman,et al.  Structure of concanavalin A at 2.4-Ang resolution , 1972 .

[35]  Nathan Sharon,et al.  Carbohydrates as future anti-adhesion drugs for infectious diseases. , 2006, Biochimica et biophysica acta.

[36]  A. Imberty,et al.  Selectivity among two lectins: probing the effect of topology, multivalency and flexibility of "clicked" multivalent glycoclusters. , 2011, Chemistry.

[37]  J. H. Seo,et al.  A functional carbohydrate chip platform for analysis of carbohydrate–protein interaction , 2010, Nanotechnology.

[38]  Judith Klein-Seetharaman,et al.  Mechanistic investigations of horseradish peroxidase-catalyzed degradation of single-walled carbon nanotubes. , 2009, Journal of the American Chemical Society.

[39]  G. Bodey,et al.  Infections caused by Pseudomonas aeruginosa. , 1983, Reviews of infectious diseases.

[40]  Jaroslav Koca,et al.  High affinity fucose binding of Pseudomonas aeruginosa lectin PA‐IIL: 1.0 Å resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches , 2004, Proteins: Structure, Function, and Bioinformatics.

[41]  R. Boteva,et al.  Binding of hydrophobic ligands by Pseudomonas aeruginosa PA-I lectin. , 2003, Biochimica et biophysica acta.

[42]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[43]  Carolyn R. Bertozzi,et al.  Chemical Glycobiology , 2001, Science.

[44]  A. Imberty,et al.  Combining glycomimetic and multivalent strategies toward designing potent bacterial lectin inhibitors. , 2011, Chemistry.

[45]  Taro Kimura,et al.  Single-walled carbon nanotubes acquire a specific lectin-affinity through supramolecular wrapping with lactose-appended schizophyllan. , 2004, Chemical communications.

[46]  M. Francis,et al.  Integration of a self-assembling protein scaffold with water-soluble single-walled carbon nanotubes. , 2007, Angewandte Chemie.

[47]  Michaela Wimmerová,et al.  Structural basis of calcium and galactose recognition by the lectin PA‐IL of Pseudomonas aeruginosa , 2003, FEBS letters.

[48]  A. Star,et al.  Electrochemical Detection with Platinum Decorated Carbon Nanomaterials , 2011 .

[49]  A. Imberty,et al.  Structures of the lectins from Pseudomonas aeruginosa: insight into the molecular basis for host glycan recognition. , 2004, Microbes and infection.

[50]  Serge Pérez,et al.  Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients , 2002, Nature Structural Biology.

[51]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[52]  A. Stocker,et al.  A Glycopeptide Dendrimer Inhibitor of the Galactose-Specific Lectin LecA and of Pseudomonas aeruginosa Biofilms , 2011, Angewandte Chemie.

[53]  B. Zhang,et al.  An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly , 2011 .

[54]  J. Vasseur,et al.  Microwave assisted "click" chemistry for the synthesis of multiple labeled-carbohydrate oligonucleotides on solid support. , 2006, The Journal of organic chemistry.

[55]  A. Imberty,et al.  Fucosylated pentaerythrityl phosphodiester oligomers (PePOs): automated synthesis of DNA-based glycoclusters and binding to Pseudomonas aeruginosa lectin (PA-IIL). , 2007, Bioconjugate chemistry.

[56]  Peng Chen,et al.  Electrical Detection of DNA Hybridization with Single‐Base Specificity Using Transistors Based on CVD‐Grown Graphene Sheets , 2010, Advanced materials.

[57]  Raymond A. Dwek,et al.  Glycobiology: Toward Understanding the Function of Sugars. , 1996, Chemical reviews.

[58]  Inmaculada Fernández,et al.  Non-covalent functionalization of carbon nanotubes with glycolipids: glyconanomaterials with specific lectin-affinity , 2009 .

[59]  A. Ferrari,et al.  Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. , 2009, ACS Nano.

[60]  W. Zhang,et al.  Bacteria targeted by human natural antibodies using alpha-Gal conjugated receptor-specific glycopolymers. , 1999, Bioorganic & medicinal chemistry.

[61]  Ya‐Ping Sun,et al.  Selective interactions of sugar-functionalized single-walled carbon nanotubes with Bacillus spores. , 2009, ACS nano.

[62]  R. Boukherroub,et al.  Label-free detection of lectins on carbohydrate-modified boron-doped diamond surfaces. , 2010, Analytical Chemistry.