LFPy – multimodal modeling of extracellular neuronal recordings in Python

LFPy is an open-source tool for calculating brain signals such as extracellular potentials and magnetic signals from simulated activity in multicompartment neuron models, ranging from single cells to large neuronal networks. The tool is provided as a Python package, and relies on the NEURON simulation environment.

[1]  Gaute T. Einevoll,et al.  LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons , 2014, Front. Neuroinform..

[2]  Torbjørn V. Ness,et al.  Neural timing of stimulus events with microsecond precision , 2018, PLoS biology.

[3]  Erik De Schutter,et al.  Modeling Complex Neurons , 2009 .

[4]  Thierry Bal,et al.  Local recording of biological magnetic fields using Giant Magneto Resistance-based micro-probes , 2016, Scientific Reports.

[5]  Klas H. Pettersen,et al.  Modeling the Spatial Reach of the LFP , 2011, Neuron.

[6]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[7]  Sonja Grün,et al.  Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks , 2015, Cerebral cortex.

[8]  Gert Cauwenberghs,et al.  Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. , 2018, Journal of neurophysiology.

[9]  Gert Cauwenberghs,et al.  How does the presence of neural probes affect extracellular potentials? , 2019, Journal of neural engineering.

[10]  Andrew R. Mayer,et al.  Modelling the magnetic signature of neuronal tissue , 2007, NeuroImage.

[11]  István Ulbert,et al.  Revealing the distribution of transmembrane currents along the dendritic tree of a neuron from extracellular recordings , 2017, eLife.

[12]  Gaute T. Einevoll,et al.  Frequency Dependence of Signal Power and Spatial Reach of the Local Field Potential , 2013, PLoS Comput. Biol..

[13]  Christof Koch,et al.  Electrical Interactions via the Extracellular Potential Near Cell Bodies , 1999, Journal of Computational Neuroscience.

[14]  Klaus Obermayer,et al.  An automated online positioning system and simulation environment for multi-electrodes in extracellular recordings , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[15]  Anders M. Dale,et al.  Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution , 2010, Journal of Computational Neuroscience.

[16]  Anders M. Dale,et al.  Generalized Laminar Population Analysis (gLPA) for Interpretation of Multielectrode Data from Cortex , 2016, Front. Neuroinform..

[17]  A. Lees Modelling and Analysis , 2015 .

[18]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[19]  Anders M. Dale,et al.  On the Estimation of Population-Specific Synaptic Currents from Laminar Multielectrode Recordings , 2011, Front. Neuroinform..

[20]  D. Wójcik,et al.  Independent Components of Neural Activity Carry Information on Individual Populations , 2014, PloS one.

[21]  Gaute T. Einevoll,et al.  Estimation of population firing rates and current source densities from laminar electrode recordings , 2008, Journal of Computational Neuroscience.

[22]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[23]  Gaute T. Einevoll,et al.  Modelling and Analysis of Electrical Potentials Recorded in Microelectrode Arrays (MEAs) , 2015, Neuroinformatics.

[24]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[25]  Christof Koch,et al.  Using extracellular action potential recordings to constrain compartmental models , 2007, Journal of Computational Neuroscience.

[26]  Gaute T. Einevoll,et al.  Intrinsic dendritic filtering gives low-pass power spectra of local field potentials , 2010, Journal of Computational Neuroscience.

[27]  Gaute T. Einevoll,et al.  ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithms , 2015, Journal of Neuroscience Methods.

[28]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[29]  Oscar Herreras,et al.  Diversity of LFPs Activated in Different Target Regions by a Common CA3 Input. , 2016, Cerebral cortex.

[30]  Oscar Herreras,et al.  Determining the True Polarity and Amplitude of Synaptic Currents Underlying Gamma Oscillations of Local Field Potentials , 2013, PloS one.

[31]  Klas H. Pettersen,et al.  Amplitude variability and extracellular low-pass filtering of neuronal spikes. , 2008, Biophysical journal.

[32]  Torbjørn V. Ness,et al.  Impedance Spectrum in Cortical Tissue: Implications for Propagation of LFP Signals on the Microscopic Level , 2017, eNeuro.

[33]  Erik De Schutter Computational Modeling Methods for Neuroscientists , 2009 .

[34]  Richard Kempter,et al.  Dipolar extracellular potentials generated by axonal projections , 2017, bioRxiv.

[35]  Christof Koch,et al.  Local Field Potentials Encode Place Cell Ensemble Activation during Hippocampal Sharp Wave Ripples , 2015, Neuron.

[36]  P. Fries,et al.  In Vivo Magnetic Recording of Neuronal Activity , 2016, Neuron.

[37]  Anders M. Dale,et al.  Handbook of Neural Activity Measurement: Extracellular spikes and CSD , 2012 .

[38]  Christof Koch,et al.  The Spiking Component of Oscillatory Extracellular Potentials in the Rat Hippocampus , 2012, The Journal of Neuroscience.

[39]  Xing Chen,et al.  Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): comparing multi-electrode recordings from simulated and biological mammalian cortical tissue , 2014, Brain Structure and Function.

[40]  Rishikesh Narayanan,et al.  HCN channels enhance spike phase coherence and regulate the phase of spikes and LFPs in the theta-frequency range , 2015, Proceedings of the National Academy of Sciences.

[41]  Thomas R. Knösche,et al.  A guideline for head volume conductor modeling in EEG and MEG , 2014, NeuroImage.

[42]  Gaute T. Einevoll,et al.  Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0 , 2018, bioRxiv.

[43]  Maureen Clerc,et al.  Handbook of Neural Activity Measurement: EEG and MEG: forward modeling , 2012 .

[44]  Oscar Herreras,et al.  Parallel Readout of Pathway-Specific Inputs to Laminated Brain Structures , 2011, Front. Syst. Neurosci..

[45]  R. Kawashima,et al.  An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. , 2010, Journal of neurophysiology.

[46]  Torbjørn V. Ness,et al.  Active subthreshold dendritic conductances shape the local field potential , 2015, The Journal of physiology.

[47]  Michael L. Hines,et al.  Neuroinformatics Original Research Article Neuron and Python , 2022 .

[48]  Anders Lansner,et al.  Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models , 2015, PLoS Comput. Biol..

[49]  Martin Garwicz,et al.  Computationally efficient simulation of extracellular recordings with multielectrode arrays , 2012, Journal of Neuroscience Methods.

[50]  Anders M. Dale,et al.  Corrected Four-Sphere Head Model for EEG Signals , 2017, Front. Hum. Neurosci..

[51]  Yu Huang,et al.  The New York Head—A precise standardized volume conductor model for EEG source localization and tES targeting , 2015, NeuroImage.

[52]  Scott F. Lempka,et al.  Theoretical Analysis of the Local Field Potential in Deep Brain Stimulation Applications , 2013, PloS one.

[53]  Gaute T. Einevoll,et al.  h-Type Membrane Current Shapes the Local Field Potential from Populations of Pyramidal Neurons , 2018, The Journal of Neuroscience.

[54]  Espen Hagen,et al.  Focal Local Field Potential Signature of the Single-Axon Monosynaptic Thalamocortical Connection , 2017, The Journal of Neuroscience.

[55]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[56]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .