Mechanisms of selective motor neuron death in transgenic mouse models of motor neuron disease

To examine the mechanism(s) of disease underlying ALS, transgenic mouse models have been constructed that express aberrant neurofilaments or mutations in the abundant, cytoplasmic enzyme superoxide dismutase 1 (SOD1).In addition to progressive weakness arising from selective motor neuron death, mice expressing a modest level of a point mutant in neurofilament subunit NF-L show most of the pathologic hallmarks observed in familial and sporadic ALS, including perikaryal proximal axonal swellings, axonal degeneration, and severe skeletal muscle atrophy. Additional mice expressing familial ALS-linked mutations in the cytoplasmic enzyme SOD1, the only proven cause of ALS and which accounts for approximate 20% of familial disease, have demonstrated that at least one mutation causes disease through acquisition of an adverse property by the mutant enzyme, rather than elevation or loss of SOD1 activity. These animals not only provide a detailed look at the pathogenic progression of disease, but also represent a tool for testing hypotheses concerning the specific mechanism(s) of neuronal death and for testing therapeutic strategies. NEUROLOGY 1996;47(Suppl 2): S54-S62

[1]  M. Beal,et al.  Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury , 1996, Nature Genetics.

[2]  G. Rouleau,et al.  Analysis of the KSP repeat of the neurofilament heavy subunit in familial amyotrophic lateral sclerosis , 1996, Neurology.

[3]  D. Bredesen,et al.  Altered Reactivity of Superoxide Dismutase in Familial Amyotrophic Lateral Sclerosis , 1996, Science.

[4]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[5]  J. Julien,et al.  Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis , 1995, Nature.

[6]  R. Orrell,et al.  A novel SOD mutant and ALS , 1995, Nature.

[7]  M. Gurney,et al.  Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS) , 1995, Brain Research.

[8]  Robert H. Brown,et al.  Amyotrophic lateral sclerosis: Recent insights from genetics and transgenic mice , 1995, Cell.

[9]  D. Borchelt,et al.  Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Morrison,et al.  Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[11]  J. Daly The chemistry of poisons in amphibian skin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[12]  V. Meininger,et al.  Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. , 1994, Human molecular genetics.

[13]  D. Cleveland,et al.  A mutant neurofilament subunit causes massive, selective motor neuron death: Implications for the pathogenesis of human motor neuron disease , 1994, Neuron.

[14]  P. Fraser,et al.  Analysis of the functional effects of a mutation in SOD1 associated with familial amyotrophic lateral sclerosis , 1994, Neuron.

[15]  D. Borchelt,et al.  Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. Julien,et al.  Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis , 1993, Cell.

[17]  L. Cork,et al.  Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease , 1993, Cell.

[18]  H. Schmalbruch,et al.  A New Mouse Mutant with Progressive Motor Neuronopathy , 1991, Journal of neuropathology and experimental neurology.

[19]  J. Miklossy,et al.  The Long-Distance Effects of Brain Lesions: Visualization of Myelinated Pathways in the Human Brain Using Polarizing and Fluorescence Microscopy , 1991, Journal of neuropathology and experimental neurology.

[20]  L. Kurland,et al.  Fine Structural Study of Neurofibrillary Changes in a Family with Amyotrophic Lateral Sclerosis , 1984, Journal of neuropathology and experimental neurology.

[21]  P. Dyck,et al.  Morphometric Comparison of the Vulnerability of Peripheral Motor and Sensory Neurons in Amyotrophic Lateral Sclerosis , 1981, Journal of neuropathology and experimental neurology.

[22]  P. C. Legolvan Color Atlas of Pathology of the Nervous System , 1981 .

[23]  S. Carpenter Proximal axonal enlargement in motor neuron disease , 1968, Neurology.

[24]  R. Herndon,et al.  Light and electron microscopy observations on the development of viral particles in the inclusions of Dawson's encephalitis (subacute sclerosing panencephalitis) , 1968, Neurology.

[25]  S. Emr,et al.  Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins. , 1995, Annual review of cell and developmental biology.

[26]  O. Rodrigues A Case of Werdnig-Hoffman Disease. , 1992 .

[27]  Globus Rs The life force of Grete Globus. , 1971 .