Quantum dots as cellular probes.

Robust and bright light emitters, semiconductor nanocrystals [quantum dots (QDs)] have been adopted as a new class of fluorescent labels. Six years after the first experiments of their uses in biological applications, there have been dramatic improvements in understanding surface chemistry, biocompatibility, and targeting specificity. Many studies have shown the great potential of using quantum dots as new probes in vitro and in vivo. This review summarizes the recent advances of quantum dot usage at the cellular level, including immunolabeling, cell tracking, in situ hybridization, FRET, in vivo imaging, and other related technologies. Limitations and potential future uses of quantum dot probes are also discussed.

[1]  A Paul Alivisatos,et al.  Quantum-dot-based cell motility assay. , 2003, Science's STKE : signal transduction knowledge environment.

[2]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[3]  Shinsuke Sando,et al.  A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. , 2004, Journal of the American Chemical Society.

[4]  O. Minet,et al.  Heat Stress Induced Redistribution of Fluorescent Quantum Dots in Breast Tumor Cells , 2004, Journal of Fluorescence.

[5]  Shimon Weiss,et al.  Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides. , 2004, Journal of the American Chemical Society.

[6]  M. Bruchez,et al.  Optical coding of mammalian cells using semiconductor quantum dots. , 2004, Analytical biochemistry.

[7]  Joachim O. Rädler,et al.  Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell: A General Route to Water Soluble Nanocrystals , 2004 .

[8]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[9]  Peter E Barker,et al.  Semiconductor nanocrystal probes for human metaphase chromosomes. , 2004, Nucleic acids research.

[10]  Zhixiong Xie,et al.  Exploring the mechanism of competence development in Escherichia coli using quantum dots as fluorescent probes. , 2004, Journal of biochemical and biophysical methods.

[11]  Akiyoshi Hoshino,et al.  Applications of T-lymphoma labeled with fluorescent quantum dots to cell tracing markers in mouse body. , 2004, Biochemical and biophysical research communications.

[12]  Zeev Rosenzweig,et al.  Superparamagnetic Fe2O3 Beads−CdSe/ZnS Quantum Dots Core−Shell Nanocomposite Particles for Cell Separation , 2004 .

[13]  Taekjip Ha,et al.  Near-complete suppression of quantum dot blinking in ambient conditions. , 2004, Journal of the American Chemical Society.

[14]  Igor L. Medintz,et al.  Reversible modulation of quantum dot photoluminescence using a protein- bound photochromic fluorescence resonance energy transfer acceptor. , 2004, Journal of the American Chemical Society.

[15]  Igor L. Medintz,et al.  Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. , 2003, Journal of the American Chemical Society.

[16]  Graham Dellaire,et al.  Application of Quantum Dots as Probes for Correlative Fluorescence, Conventional, and Energy-filtered Transmission Electron Microscopy , 2004, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[17]  Byron Ballou,et al.  Noninvasive imaging of quantum dots in mice. , 2004, Bioconjugate chemistry.

[18]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[19]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[20]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[21]  T. Hirano,et al.  Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates , 2003, Cell Research.

[22]  Moungi G Bawendi,et al.  Oligomeric ligands for luminescent and stable nanocrystal quantum dots. , 2003, Journal of the American Chemical Society.

[23]  Itamar Willner,et al.  Lighting-up the dynamics of telomerization and DNA replication by CdSe-ZnS quantum dots. , 2003, Journal of the American Chemical Society.

[24]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.

[25]  F Tokumasu,et al.  Development and application of quantum dots for immunocytochemistry of human erythrocytes , 2003, Journal of microscopy.

[26]  S. Nie,et al.  Molecular profiling of single cells and tissue specimens with quantum dots. , 2003, Trends in biotechnology.

[27]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[28]  A Paul Alivisatos,et al.  Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. , 2003, Analytical chemistry.

[29]  K. Roth,et al.  Combined Tyramide Signal Amplification and Quantum Dots for Sensitive and Photostable Immunofluorescence Detection , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[30]  Robert H. Singer,et al.  Fluorescence in situ hybridization: past, present and future , 2003, Journal of Cell Science.

[31]  Xiaogang Peng,et al.  Conjugation Chemistry and Bioapplications of Semiconductor Box Nanocrystals Prepared via Dendrimer Bridging , 2003 .

[32]  K. H. Nealson,et al.  Quantum Dots as Strain- and Metabolism-Specific Microbiological Labels , 2003, Applied and Environmental Microbiology.

[33]  Christine M. Micheel,et al.  Biological applications of colloidal nanocrystals , 2003 .

[34]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[35]  J. Treadway,et al.  Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. , 2003, Nucleic acids research.

[36]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[37]  Kenji Yamamoto,et al.  Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. , 2003, Biochemical and biophysical research communications.

[38]  M. Bruchez,et al.  Lighting up cells with quantum dots. , 2003, BioTechniques.

[39]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[40]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[41]  Vincent Noireaux,et al.  In Vivo Imaging of Quantum Dots Encapsulated in Phospholipid Micelles , 2002, Science.

[42]  Shuming Nie,et al.  Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding. , 2002, Journal of biomedical optics.

[43]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Z. Rosenzweig,et al.  Luminescent CdS quantum dots as selective ion probes. , 2002, Analytical chemistry.

[45]  A. Sutherland,et al.  Quantum dots as luminescent probes in biological systems , 2002 .

[46]  Christine M. Micheel,et al.  Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks , 2002 .

[47]  A Paul Alivisatos,et al.  Sorting fluorescent nanocrystals with DNA. , 2002, Journal of the American Chemical Society.

[48]  James McBride,et al.  Targeting cell surface receptors with ligand-conjugated nanocrystals. , 2002, Journal of the American Chemical Society.

[49]  Xiaogang Peng,et al.  Stabilization of inorganic nanocrystals by organic dendrons. , 2002, Journal of the American Chemical Society.

[50]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[51]  H. Mattoussi,et al.  Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. , 2002, Analytical chemistry.

[52]  H. Mattoussi,et al.  Luminescent Quantum Dot-Adaptor Protein-Antibody Conjugates for Use in Fluoroimmunoassays , 2002 .

[53]  Shimon Weiss,et al.  Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling , 2001 .

[54]  Jessica O. Winter,et al.  Recognition Molecule Directed Interfacing Between Semiconductor Quantum Dots and Nerve Cells , 2001 .

[55]  Xiaogang Peng,et al.  Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. , 2001, Journal of the American Chemical Society.

[56]  Dale M. Willard,et al.  CdSe−ZnS Quantum Dots as Resonance Energy Transfer Donors in a Model Protein−Protein Binding Assay , 2001 .

[57]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[58]  Shimon Weiss,et al.  Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots† , 2001 .

[59]  M. Dahan,et al.  Time-gated biological imaging by use of colloidal quantum dots. , 2001, Optics letters.

[60]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[61]  D. Ginger,et al.  Enhanced Förster energy transfer in organic/inorganic bilayer optical microcavities , 2001 .

[62]  S. Pathak,et al.  Hydroxylated quantum dots as luminescent probes for in situ hybridization. , 2001, Journal of the American Chemical Society.

[63]  Kaushik Patel,et al.  Q-CdS Photoluminescence Activation on Zn2+ and Cd2+ Salt Introduction , 2001 .

[64]  George P. Anderson,et al.  Bioconjugation of Highly Luminescent Colloidal CdSe–ZnS Quantum Dots with an Engineered Two-Domain Recombinant Protein , 2001 .

[65]  C. Larabell,et al.  High resolution protein localization using soft X‐ray microscopy , 2001, Journal of microscopy.

[66]  Depu Chen,et al.  Microminiaturized immunoassays using quantum dots as fluorescent label by laser confocal scanning fluorescence detection. , 2001, Journal of immunological methods.

[67]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[68]  W. E. Moerner,et al.  Photon antibunching in single CdSe/ZnS quantum dot fluorescence , 2000 .

[69]  J. Lakowicz,et al.  Time-resolved spectral observations of cadmium-enriched cadmium sulfide nanoparticles and the effects of DNA oligomer binding. , 2000, Analytical biochemistry.

[70]  Ma Hui,et al.  Quantum dot-labeled trichosanthin , 2000 .

[71]  C. Murphy,et al.  Temperature- and Salt-Dependent Binding of Long DNA to Protein-Sized Quantum Dots: Thermodynamics of “Inorganic Protein”−DNA Interactions , 2000 .

[72]  Chad A. Mirkin,et al.  Programmed Assembly of DNA Functionalized Quantum Dots , 1999 .

[73]  Chia-Chun Chen,et al.  Self-Assembly of Monolayers of Cadmium Selenide Nanocrystals with Dual Color Emission , 1999 .

[74]  Alexander Eychmüller,et al.  Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification , 1998 .

[75]  M. Aslam,et al.  Bioconjugation: Protein Coupling Techniques for the Biomedical Sciences , 1998 .

[76]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[77]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[78]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[79]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[80]  Cherie R. Kagan,et al.  Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. , 1996, Physical review. B, Condensed matter.

[81]  Catherine J. Murphy,et al.  Photophysical Properties of ZnS Nanoclusters with Spatially Localized Mn2 , 1996 .

[82]  Cherie R. Kagan,et al.  Electronic energy transfer in CdSe quantum dot solids. , 1996, Physical review letters.

[83]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[84]  B. Meer,et al.  Resonance Energy Transfer: Theory and Data , 1994 .

[85]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[86]  Horst Weller,et al.  Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles , 1987 .

[87]  Y Iwamoto,et al.  A rapid in vitro assay for quantitating the invasive potential of tumor cells. , 1987, Cancer research.

[88]  G. Martin,et al.  Basement membrane and the invasive activity of metastatic tumor cells. , 1986, Journal of the National Cancer Institute.

[89]  R. Kramer,et al.  Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. , 1986, Cancer research.

[90]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.

[91]  G. Albrecht-Buehler,et al.  Phagokinetic tracks of 3T3 cells: Parallels between the orientation of track segments and of cellular structures which contain actin or tubulin , 1977, Cell.

[92]  G. Albrecht-Buehler,et al.  The phagokinetic tracks of 3T3 cells , 1977, Cell.