Switching, relay and complementarity systems: A tutorial on their well-posedness and relationships

This paper reviews the relationships between switching systems defined from a partition of the state space into convex cells, and relay or complementarity dynamical systems, which are other classes of discontinuous systems. Well-posedness results (i.e. results on the existence and the uniqueness of solutions) for different classes of relay and complementarity systems which are also switching systems are presented. The reverse issue (when can a switching system be rewritten equivalently as a relay or a complementarity system) is also tackled. Many examples from Mechanics, Circuits, and Biology illustrate the developments throughout the paper. The paper focuses on systems with continuous solutions (i.e. with no state jumps). Convexity is the central property.

[1]  L. Vandenberghe,et al.  The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits , 1989, IEEE International Symposium on Circuits and Systems,.

[2]  Vincent Acary,et al.  Implicit Euler numerical scheme and chattering-free implementation of sliding mode systems , 2010, Syst. Control. Lett..

[3]  B. Brogliato,et al.  Existence and Uniqueness of Solutions for Non-Autonomous Complementarity Dynamical Systems , 2010 .

[4]  Hidde de Jong,et al.  Modeling and Simulation of Genetic Regulatory Systems: A Literature Review , 2002, J. Comput. Biol..

[5]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[6]  J. Willems,et al.  The contact problem for linear continuous-time dynamical systems: a geometric approach , 1997, IEEE Trans. Autom. Control..

[7]  Marius-F. Danca On a class of non-smooth dynamical systems: a sufficient condition for smooth versus non-smooth solutions , 2007 .

[8]  D. Stewart A numerical algorithm for optimal control problems with switching costs , 1992, The Journal of the Australian Mathematical Society Series B Applied Mathematics.

[9]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[10]  Jun-ichi Imura,et al.  Well-posedness analysis of switch-driven piecewise affine systems , 2003, IEEE Trans. Autom. Control..

[11]  W.P.M.H. Heemels,et al.  A time-stepping method for relay systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[12]  K. Teo,et al.  Existence and uniqueness of solutions of piecewise nonlinear systems , 2009 .

[13]  M. Kanat Camlibel,et al.  Continuous Piecewise Affine Dynamical Systems do not Exhibit Zeno Behavior , 2011, IEEE Transactions on Automatic Control.

[14]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[15]  P. Panagiotopoulos,et al.  Nonsmooth Mechanics I , 1996 .

[16]  Vincent Acary,et al.  Nonsmooth Modeling and Simulation for Switched Circuits , 2010, Lecture Notes in Electrical Engineering.

[17]  Bernard Brogliato,et al.  Some perspectives on the analysis and control of complementarity systems , 2003, IEEE Trans. Autom. Control..

[18]  D. Stewart A high accuracy method for solving ODEs with discontinuous right-hand side , 1990 .

[19]  Jérôme Bastien,et al.  NUMERICAL PRECISION FOR DIFFERENTIAL INCLUSIONS WITH UNIQUENESS , 2002 .

[20]  C. Glocker Set-Valued Force Laws: Dynamics of Non-Smooth Systems , 2012 .

[21]  Y. Orlov Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions , 2008 .

[22]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[23]  M. Kanat Camlibel,et al.  Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..

[24]  M. Marques,et al.  Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction , 1993 .

[25]  Bernard Brogliato Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings , 2004, Syst. Control. Lett..

[26]  Jun Zhao,et al.  Dissipativity Theory for Switched Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[27]  H. D. Jong,et al.  Piecewise-linear Models of Genetic Regulatory Networks: Equilibria and their Stability , 2006, Journal of mathematical biology.

[28]  Arjan van der Schaft,et al.  Uniqueness of solutions of linear relay systems , 1999, Autom..

[29]  Mario di Bernardo,et al.  Minimal control synthesis adaptive control of continuous bimodal piecewise affine systems , 2010, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[30]  Wilfrid Perruquetti,et al.  Finite-time stability and stabilization: State of the art , 2006 .

[31]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[32]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[33]  Vincent Acary,et al.  Time-Stepping Numerical Simulation of Switched Circuits Within the Nonsmooth Dynamical Systems Approach , 2010, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[34]  Qing-Guo Wang,et al.  On uniqueness of solutions to relay feedback systems , 2002, Autom..

[35]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[36]  Si-Lu Chen,et al.  Identification of Coulomb Friction-Impeded Systems With a Triple-Relay Feedback Apparatus , 2012, IEEE Transactions on Control Systems Technology.

[37]  Luca Dieci,et al.  Sliding motion on discontinuity surfaces of high co-dimension. A construction for selecting a Filippov vector field , 2011, Numerische Mathematik.

[38]  F. M. Callier,et al.  Dissipative Systems Analysis and Control: Theory and Applications (2nd Edition)-[Book review; B. Brogliato, R. Lozano, B. Maschke] , 2007, IEEE Transactions on Automatic Control.

[39]  M. Kanat Camlibel,et al.  Linear Passive Networks With Ideal Switches: Consistent Initial Conditions and State Discontinuities , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  Vincent Acary,et al.  Coefficients de restitution et efforts aux impacts : Revue et comparaison des estimations analytiques , 2004 .

[41]  Vincent Acary,et al.  On the equivalence between complementarity systems, projected systems and differential inclusions , 2006, Syst. Control. Lett..

[42]  X. Xia Well posedness of piecewise-linear systems with multiple modes and multiple criteria , 2002, IEEE Trans. Autom. Control..

[43]  M. K. Camlibel,et al.  Uniqueness of solutions of relay systems , 1997 .

[44]  Luca Dieci,et al.  Sliding Motion in Filippov Differential Systems: Theoretical Results and a Computational Approach , 2009, SIAM J. Numer. Anal..

[45]  Jean-Luc Gouzé,et al.  A mathematical framework for the control of piecewise-affine models of gene networks , 2008, Autom..

[46]  L. Vandenberghe,et al.  The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits , 1989 .

[47]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[48]  S. Scholtes Introduction to Piecewise Differentiable Equations , 2012 .

[49]  Vincent Acary,et al.  Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation , 2008, Math. Program..

[50]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[51]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[52]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[53]  Xinghuo Yu,et al.  Discretization Effect on Equivalent Control-Based Multi-Input Sliding-Mode Control Systems , 2008, IEEE Transactions on Automatic Control.

[54]  W. P. M. H. Heemels,et al.  Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach , 2009, IEEE Transactions on Automatic Control.

[55]  Marius-F. Danca,et al.  On the uniqueness of solutions to a class of discontinuous dynamical systems , 2010 .

[56]  Jun-ichi Imura,et al.  Characterization of well-posedness of piecewise-linear systems , 2000, IEEE Trans. Autom. Control..

[57]  Claude-Henri Lamarque,et al.  Persoz’s gephyroidal model described by a maximal monotone differential inclusion , 2008 .

[58]  M. Kanat Camlibel,et al.  Lyapunov Stability of Complementarity and Extended Systems , 2006, SIAM J. Optim..

[59]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .

[60]  Arcady Ponosov,et al.  Filippov solutions in the analysis of piecewise linear models describing gene regulatory networks , 2011 .

[61]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[62]  J. Moreau Evolution problem associated with a moving convex set in a Hilbert space , 1977 .

[63]  M. Kanat Camlibel,et al.  Observer‐based control of linear complementarity systems , 2008, HSCC.

[64]  Domine M. W. Leenaerts,et al.  Piecewise Linear Modeling and Analysis , 1998 .

[65]  M. Kanat Camlibel,et al.  On Linear Passive Complementarity Systems , 2002, Eur. J. Control.

[66]  B. Brogliato,et al.  Well-posedness, stability and invariance results for a class of multivalued Lur'e dynamical systems , 2011 .

[67]  P. P. J. van den Bosch,et al.  On Constrained Steady-State Regulation: Dynamic KKT Controllers , 2009, IEEE Transactions on Automatic Control.

[68]  Marius-F. Danca,et al.  On a class of discontinuous dynamical systems , 2001 .

[69]  Erik Plahte,et al.  Analysis and generic properties of gene regulatory networks with graded response functions , 2005 .

[70]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[71]  W. P. M. H. Heemels,et al.  On solution concepts and well-posedness of linear relay systems , 2003, Autom..

[72]  J. Gouzé,et al.  A class of piecewise linear differential equations arising in biological models , 2002 .

[73]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[74]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[75]  M. Johansson,et al.  Piecewise Linear Control Systems , 2003 .