Quantile regression in varying coefficient models
暂无分享,去创建一个
[1] Probal Chaudhuri,et al. Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .
[2] W. W. Daniel. Applied Nonparametric Statistics , 1979 .
[3] R. Tibshirani,et al. Varying‐Coefficient Models , 1993 .
[4] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[5] Ruey S. Tsay,et al. Functional-Coefficient Autoregressive Models , 1993 .
[6] Wenyang Zhang,et al. Variable Bandwidth Selection in Varying-Coefficient Models , 2000 .
[7] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[8] Jianqing Fan,et al. Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .
[9] Zongwu Cai,et al. Two-Step Likelihood Estimation Procedure for Varying-Coefficient Models , 2002 .
[10] C. Xiru,et al. Asymptotic Normality of Minimum L1-Norm Estimates in Linear Models , 1990 .
[11] Zhongyi Zhu,et al. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .
[12] Gerhard Tutz,et al. Local likelihood estimation in varying-coefficient models including additive bias correction , 2000 .
[13] Kjell A. Doksum,et al. On average derivative quantile regression , 1997 .
[14] Jianqing Fan,et al. Statistical Estimation in Varying-Coefficient Models , 1999 .
[15] R. Koenker,et al. Asymptotic Theory of Least Absolute Error Regression , 1978 .
[16] Enno Mammen,et al. The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .
[17] H. Koul. A weak convergence result useful in robust autoregression , 1991 .
[18] NONPARAMETRIC ESTIMATION OF THE CONDITIONAL MEDIAN FUNCTION FOR LONG-RANGE DEPENDENT PROCESSES , 2000 .
[19] Q. Shao,et al. A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .
[20] Toshio Honda,et al. Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes , 2000 .
[21] Jianqing Fan,et al. Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .
[22] D. Pollard. Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.
[23] P. McCullagh,et al. Generalized Linear Models , 1992 .
[24] K. Doksum,et al. On spline estimators and prediction intervals in nonparametric regression , 2000 .
[25] R. Koenker,et al. Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .
[26] Stephen Portnoy,et al. Local asymptotics for quantile smoothing splines , 1997 .
[27] P. Shi,et al. Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .
[28] Jianqing Fan,et al. Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .