Quantile regression in varying coefficient models

Abstract This paper deals with the estimation of conditional quantiles in varying coefficient models by estimating the coefficients. Varying coefficient models are among popular models that have been proposed to alleviate the curse of dimensionality. Previous works on varying coefficient models deal with conditional means directly or indirectly. However, quantiles themselves can be defined without moment conditions and plotting several conditional quantiles would give us more understanding of the data than plotting just the conditional mean. Particularly, we estimate the conditional median by estimating varying coefficients by local L 1 regression.

[1]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[2]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[3]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[4]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[5]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[6]  Wenyang Zhang,et al.  Variable Bandwidth Selection in Varying-Coefficient Models , 2000 .

[7]  Pin T. Ng,et al.  Quantile smoothing splines , 1994 .

[8]  Jianqing Fan,et al.  Two‐step estimation of functional linear models with applications to longitudinal data , 1999 .

[9]  Zongwu Cai,et al.  Two-Step Likelihood Estimation Procedure for Varying-Coefficient Models , 2002 .

[10]  C. Xiru,et al.  Asymptotic Normality of Minimum L1-Norm Estimates in Linear Models , 1990 .

[11]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[12]  Gerhard Tutz,et al.  Local likelihood estimation in varying-coefficient models including additive bias correction , 2000 .

[13]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[14]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[15]  R. Koenker,et al.  Asymptotic Theory of Least Absolute Error Regression , 1978 .

[16]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[17]  H. Koul A weak convergence result useful in robust autoregression , 1991 .

[18]  NONPARAMETRIC ESTIMATION OF THE CONDITIONAL MEDIAN FUNCTION FOR LONG-RANGE DEPENDENT PROCESSES , 2000 .

[19]  Q. Shao,et al.  A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs , 1996 .

[20]  Toshio Honda,et al.  Nonparametric Estimation of a Conditional Quantile for α-Mixing Processes , 2000 .

[21]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[22]  D. Pollard Asymptotics for Least Absolute Deviation Regression Estimators , 1991, Econometric Theory.

[23]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[24]  K. Doksum,et al.  On spline estimators and prediction intervals in nonparametric regression , 2000 .

[25]  R. Koenker,et al.  Hierarchical Spline Models for Conditional Quantiles and the Demand for Electricity , 1990 .

[26]  Stephen Portnoy,et al.  Local asymptotics for quantile smoothing splines , 1997 .

[27]  P. Shi,et al.  Convergence rate of b-spline estimators of nonparametric conditional quantile functions ∗ , 1994 .

[28]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .