HOPS 361-C’s Jet Decelerating and Precessing through NGC 2071 IR

We present a two-epoch Hubble Space Telescope study of NGC 2071 IR highlighting HOPS 361-C, a protostar producing an arced 0.2 parsec-scale jet. The proper motions for the brightest knots decrease from 350 to 100 km s−1 with increasing distance from the source. The [Fe ii] and Paβ emission line intensity ratio gives a velocity jump through each knot of 40–50 km s−1. A new [O i] 63 μm spectrum, taken with the German REciever for Astronomy at Terahertz frequencies instrument aboard Stratospheric Observatory for Infrared Astronomy, shows a low line-of-sight velocity indicative of high jet inclination. Proper motions and jump velocities then estimate 3D flow speed for knots. Subsequently, we model knot positions and speeds with a precessing jet that decelerates. The measurements are matched with a precession period of 1000–3000 yr and half opening angle of 15°. The [Fe ii] 1.26-to-1.64 μm line intensity ratio determines visual extinction to each knot from 5 to 30 mag. Relative to ∼14 mag of extinction through the cloud from C18O emission maps, the jet is embedded at a 1/5–4/5 fractional cloud depth. Our model suggests the jet is dissipated over a 0.2 pc arc. This short distance may result from the jet sweeping through a wide angle, allowing the cloud time to fill cavities opened by the jet. Precessing jets contrast with nearly unidirectional protostellar jets that puncture host clouds and can propagate significantly farther.

[1]  National Radio Astronomy Observatory,et al.  The SOUL view of IRAS 20126+4104. Kinematics and variability of the H2 jet from a massive protostar , 2023, Astronomy & Astrophysics.

[2]  Zhi-Yun Li,et al.  Disks and Outflows in the Intermediate-mass Star-forming Region NGC 2071 IR , 2022, The Astrophysical Journal.

[3]  U. Barcelona,et al.  NIR spectroscopic survey of protostellar jets in the star forming region IC1396N , 2022, Astronomy & Astrophysics.

[4]  C. Fendt,et al.  Curved Jet Motion. I. Orbiting and Precessing Jets , 2022, 2205.08498.

[5]  D. Johnstone,et al.  ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Deriving Inclination Angle and Velocity of the Protostellar Jets from Their SiO Knots , 2022, The Astrophysical Journal Letters.

[6]  J. Acosta-Pulido,et al.  Collision of protostellar jets in the star-forming region IC 1396N. Analysis of knot proper motions , 2022, Astronomy & Astrophysics.

[7]  J. Bally,et al.  The APEX Large CO Heterodyne Orion Legacy Survey (ALCOHOLS). I. Survey overview , 2022, Astronomy & Astrophysics.

[8]  V. Kalari,et al.  High-resolution images of two wiggling stellar jets, MHO 1502 and MHO 2147, obtained with GSAOI+GeMS , 2021, Astronomy & Astrophysics.

[9]  A. Whitworth,et al.  Protostellar Outflows: a window to the past , 2021, Monthly Notices of the Royal Astronomical Society.

[10]  T. Ray,et al.  A MUSE spectro-imaging study of the Th 28 jet: Precession in the inner jet , 2021, Astronomy & Astrophysics.

[11]  P. Hartigan,et al.  Probing Jets from Young Embedded Sources: Clues from HST Near-IR [Fe ii] Images , 2021, The Astrophysical Journal.

[12]  H Germany,et al.  Evolution of the atomic component in protostellar outflows , 2021, Astronomy & Astrophysics.

[13]  M. Machida,et al.  ALMA Observations toward the S-shaped Outflow and the Envelope around NGC 1333 IRAS 4A2 , 2021, 2105.04224.

[14]  Z. Nagy,et al.  An HST Survey of Protostellar Outflow Cavities: Does Feedback Clear Envelopes? , 2021, The Astrophysical Journal.

[15]  Chin-Fei Lee,et al.  25 au Angular Resolution Observations of HH 211 with ALMA: Jet Properties and Shock Structures in SiO, CO, and SO , 2020, 2012.15057.

[16]  M. Tamura,et al.  Misaligned Twin Molecular Outflows from the Class 0 Protostellar Binary System VLA 1623A Unveiled by ALMA , 2020, The Astrophysical Journal.

[17]  A. Rubinstein Extinction Correction and the [Fe ii] 1.26 μm/1.64 μm Intensity Ratio , 2021, Research Notes of the AAS.

[18]  G. del Zanna,et al.  CHIANTI—An Atomic Database for Emission Lines. XVI. Version 10, Further Extensions , 2020, The Astrophysical Journal.

[19]  Ji Yang,et al.  CO Outflow Candidates toward the W3/4/5 Complex. II. Feedback from Candidate Outflows , 2020, The Astrophysical Journal Supplement Series.

[20]  Chin-Fei Lee Molecular jets from low-mass young protostellar objects , 2020, The Astronomy and Astrophysics Review.

[21]  Erin G. Cox,et al.  The VLA/ALMA Nascent Disk and Multiplicity (VANDAM) Survey of Orion Protostars. II. A Statistical Characterization of Class 0 and Class I Protostellar Disks , 2020, The Astrophysical Journal.

[22]  Usp,et al.  THE JET/COUNTERJET SYMMETRY OF THE HH 212 OUTFLOW , 2019, Revista Mexicana de Astronomía y Astrofísica.

[23]  P. Hartigan,et al.  Proper Motions and Shock Wave Dynamics in the HH 7-11 Stellar Jet , 2019, The Astrophysical Journal.

[24]  M. Machida,et al.  Origin of misalignments: protostellar jet, outflow, circumstellar disc, and magnetic field , 2019, Monthly Notices of the Royal Astronomical Society.

[25]  T. Geballe,et al.  New Near-infrared Imaging and Spectroscopy of NGC 2071-IR , 2019, The Astrophysical Journal.

[26]  A. Raga,et al.  The Time Evolution of the HH 1 Jet Modeled as a Variable Outflow , 2018, The Astrophysical Journal.

[27]  S. Cabrit,et al.  The HH30 edge-on T Tauri star , 2018, Astronomy & Astrophysics.

[28]  M. Dopita,et al.  MAPPINGS V: Astrophysical plasma modeling code , 2018 .

[29]  J. Sayers,et al.  Precessing Jet and Large Dust Grains in the V380 Ori NE Star-forming Region , 2017, 1710.03400.

[30]  N. Smith,et al.  Proper motions of collimated jets from intermediate-mass protostars in the Carina Nebula , 2017, 1706.04657.

[31]  L. Hartmann,et al.  The Herschel Orion Protostar Survey: Luminosity and Envelope Evolution , 2017, 1704.05847.

[32]  P. Hennebelle,et al.  First image of the L1157 molecular jet by the CALYPSO IRAM-PdBI survey , 2016, 1608.05026.

[33]  Department of Astrophysical Sciences,et al.  Binary system and jet precession and expansion in G35.20-0.74N , 2016, 1606.03943.

[34]  B. Vaidya,et al.  A study of the wiggle morphology of HH 211 through numerical simulations , 2016, 1605.03174.

[35]  J. Bally,et al.  THE TIME-EVOLUTION OF HH 2 FROM FOUR EPOCHS OF HST IMAGES , 2016, 1603.01572.

[36]  S. T. Megeath,et al.  THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS , 2016, 1602.07314.

[37]  Andrew Gould,et al.  Slingshot Mechanism in Orion: Kinematic Evidence For Ejection of Protostars by Filaments , 2015, 1512.04944.

[38]  J. Acosta-Pulido,et al.  3D kinematics of the near-IR HH 223 outflow in L723 , 2014, 1412.4939.

[39]  A. Riera,et al.  A ballistic model for a precessing and orbiting jet with a time-dependent ejection velocity , 2013 .

[40]  R. L'opez,et al.  THE COUNTERJET OF HH 30: NEW LIGHT ON ITS BINARY DRIVING SOURCE , 2012, 1206.3391.

[41]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[42]  J. Reunanen,et al.  Sub-arcsecond [Fe ii] spectro-imaging of the DG Tauri jet - Periodic bubbles and a dusty disk wind? , 2011, 1106.2690.

[43]  J. P. Phillips,et al.  The mid- and near-infrared structures of seven young stellar bipolar outflows , 2009 .

[44]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[45]  R. Snell,et al.  Multiple Parsec-Scale Outflows in the NGC 2071 Cluster , 2008 .

[46]  E. Bergin,et al.  Detection of Extended Hot Water in the Outflow from NGC 2071 , 2008, 0805.0573.

[47]  J. Seale,et al.  Morphological Evolution of Bipolar Outflows from Young Stellar Objects , 2008 .

[48]  L. Allen,et al.  The Spitzer Gould Belt Survey of Large Nearby Interstellar Clouds: Discovery of a Dense Embedded Cluster in the Serpens-Aquila Rift , 2007, 0712.3303.

[49]  K. Hodapp New H2 Jets in Monoceros R2 , 2007, 0708.3255.

[50]  A. Riera,et al.  Proper Motions of the Jets in the Region of HH 30 and HL/XZ Tau: Evidence for a Binary Exciting Source of the HH 30 Jet , 2007, astro-ph/0703155.

[51]  C. Matzner Protostellar Outflow-driven Turbulence , 2007, astro-ph/0701022.

[52]  E. Bergin,et al.  The Rotating Molecular Core and Precessing Outflow of the Young Stellar Object Barnard 1c , 2006, astro-ph/0609590.

[53]  Jr.,et al.  First Evidence of a Precessing Jet Excavating a Protostellar Envelope , 2006, astro-ph/0608162.

[54]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC , 2006, astro-ph/0603547.

[55]  C. Brogan,et al.  IRAS 16293–2422: Proper Motions, Jet Precession, the Hot Core, and the Unambiguous Detection of Infall , 2005, astro-ph/0506435.

[56]  A. Frank,et al.  Turbulence Driven by Outflow-blown Cavities in the Molecular Cloud of NGC 1333 , 2005, astro-ph/0503167.

[57]  D. Le Mignant,et al.  Sculpting a Pre-planetary Nebula with a Precessing Jet: IRAS 16342–3814 , 2005 .

[58]  J. Bally,et al.  An S-shaped Outflow from IRAS 03256+3055 in NGC 1333 , 2004, astro-ph/0412036.

[59]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[60]  T. Downes,et al.  The evolution and simulation of the outburst from XZ Tauri - A possible EXor? , 2004, astro-ph/0402635.

[61]  A. Goodman,et al.  PV Cephei: Young Star Caught Speeding? , 2004, astro-ph/0401486.

[62]  M. Redman,et al.  The Orion nebula (M42) Herbig–Haro object, HH 201, within the tip of a molecular finger , 2003 .

[63]  L. Hillenbrand,et al.  Accretion in Young Stellar/Substellar Objects , 2003, astro-ph/0304078.

[64]  A. Raga,et al.  The time-dependent ejection velocity histories of HH 34 and HH 111 , 2002 .

[65]  T. Ray,et al.  HST/STIS observations of the bipolar jet from RW Aurigae. , 2002, astro-ph/0207307.

[66]  P. Hartigan,et al.  Hubble Space Telescope Observations of Proper Motions in Herbig-Haro Objects 1 and 2 , 2002 .

[67]  A. Raga,et al.  Herbig-Haro Jets from Orbiting Sources , 2002 .

[68]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[69]  J. Bally,et al.  The Molecular Outflow and Possible Precessing Jet from the Massive Young Stellar Object IRAS 20126+4104 , 2000 .

[70]  P. Hartigan,et al.  Kinematics of Herbig-Haro Objects in the Protostellar Outflow L1551 as Mapped by Fabry-Perot Spectroscopy , 2000 .

[71]  J. Alves,et al.  Correlation between Gas and Dust in Molecular Clouds: L977 , 1998, astro-ph/9809027.

[72]  T. Greene,et al.  Kinematics of the HH 43 Flow: Evidence for a Precessing Jet? , 1999 .

[73]  J. Papaloizou,et al.  Precession of Collimated Outflows from Young Stellar Objects , 1998, astro-ph/9812155.

[74]  E. Ostriker,et al.  Dissipation in Compressible Magnetohydrodynamic Turbulence , 1998, astro-ph/9809357.

[75]  Hans Zinnecker,et al.  A symmetrically pulsed jet of gas from an invisible protostar in Orion , 1998, Nature.

[76]  N. Calvet,et al.  The Structure and Emission of the Accretion Shock in T Tauri Stars , 1998 .

[77]  M. Meyer,et al.  Intrinsic near-infrared excesses of T tauri stars: Understanding the classical T tauri star locus , 1997 .

[78]  P. Hartigan,et al.  Hubble Space Telescope Observations of the HH 47 Jet: Narrowband Images , 1996 .

[79]  J. Carr The H2 velocity field in Herbig-Haro 7-11 , 1993 .

[80]  A. Raga,et al.  Ballistic stellar jets from sources with a time-dependent ejection direction , 1993 .

[81]  B. Reipurth,et al.  Structure and Kinematics of the HH 111 Jet , 1992 .

[82]  L. Kofman,et al.  Modeling structures of knots in jet flows with the Burgers equation , 1992 .

[83]  P. Goldsmith,et al.  STRUCTURE, CHEMISTRY, AND CLUMPING IN THE NGC-2071 (NORTH) MOLECULAR CLOUD , 1992 .

[84]  T. Iwata,et al.  Molecular Line Study of a Bipolar Outflow Object NGC 2071--NORTH in L1630 , 1988 .

[85]  P. Hartigan,et al.  Radiative Bow Shock Models of Herbig-Haro Objects , 1987 .

[86]  P. Friberg,et al.  Evolution of star-bearing molecular clouds: the high-velocity HCO/sup +/ flow in NGC 2071 , 1984 .

[87]  L. Hartmann,et al.  A high-resolution study of Herbig-Haro objects 1 and 2 , 1984 .

[88]  J. A. Waak,et al.  High-density gas associated with 'molecular jets' - NGC 1333 and NGC 2071 , 1983 .

[89]  J. Bally Energetic activity in a star-forming molecular cloud core; a disk constrained bipolar outflow in NGC 2071 , 1982 .

[90]  R. Dickman,et al.  The ratio of carbon monoxide to molecular hydrogen in interstellar dark clouds , 1978 .

[91]  R. Dickman A survey of carbon monoxide emission in dark clouds. [cosmic dust , 1975 .