Split-Window Algorithm for Retrieval of Land Surface Temperature Using Landsat 8 Thermal Infrared Data

Land surface temperature (LST) plays a vital role in global climate change, radiation budgets, heat balance, vegetation, snowmelt, glacier hydrology, and geo-biophysical processes. It is, therefore, essential to determine LST precisely over large areas. With advancements in remote sensing, LST can now be estimated. In this study, a critical appraisal of various LST inversion algorithms is presented. These algorithms include mono-window (MW), split-window (SW), dual-angle (DA), single-channel (SC), and Sabmao method. The main objective is to derive an SW algorithm to retrieve LST from Landsat 8 satellite data and demonstrate the application to the Beas River basin in India. Located within the Himalayan range, the study area is characterized by heterogeneity and rugged terrain with areas covered by snow and glacier. The satellite imagery is a product of the Optical Land Imager (OLI) with a spatial resolution of 30 m and a thermal infrared sensor (TIRS) having a spatial resolution of 100 m. The SW algorithm requires spectral radiance and emissivity from two bands of the TIRS as input for the estimation of LST. The spectral radiance has been estimated using the TIRS bands 10 and 11. The normalized difference vegetation index (NDVI) and the threshold technique of OLI bands (2 to 5) have been used to derive the emissivity. The estimates of LST from the TIRS and OLI bands using the SW algorithm are found to be accurate and close to the in situ air temperature measurements and the LST values obtained from the MW algorithm. Results obtained show that the values of LST are high in the barren/rocky areas and low in the snow/glacier areas. The study reveals that the LST estimates from SW and MW algorithms are linearly transferable with negligible loss of accuracy. The LST estimates from the SW algorithm differs at most by up to 5 °C with the measured air temperature.

[1]  Qihao Weng Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends , 2009 .

[2]  D. Lu,et al.  Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies , 2004 .

[3]  Miquel Ninyerola,et al.  Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Martha C. Anderson,et al.  Advances in thermal infrared remote sensing for land surface modeling , 2009 .

[5]  Xiaolei Yu,et al.  Land Surface Temperature Retrieval from Landsat 8 TIRS - Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method , 2014, Remote. Sens..

[7]  Jing Li,et al.  Split-Window algorithm for estimating land surface temperature from Landsat 8 TIRS data , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[8]  Z. Wan New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product , 2014 .

[9]  Vaibhav Garg,et al.  Retrieval of land surface temperature from Landsat 8 TIRS for the command area of Mula irrigation project , 2016, Environmental Earth Sciences.

[10]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[11]  V. Caselles,et al.  Comparison between different sources of atmospheric profiles for land surface temperature retrieval from single channel thermal infrared data , 2012 .

[12]  Juan C. Jiménez-Muñoz,et al.  Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data , 2014, IEEE Geoscience and Remote Sensing Letters.

[13]  B. Dousset,et al.  Satellite multi-sensor data analysis of urban surface temperatures and landcover , 2003 .

[14]  A. Karnieli,et al.  A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region , 2001 .

[15]  J. Mallick Land Characterization Analysis of Surface Temperature of Semi-Arid Mountainous City Abha, Saudi Arabia Using Remote Sensing and GIS , 2014 .

[16]  V. Caselles,et al.  A split‐window algorithm for land surface temperature from advanced very high resolution radiometer data: Validation and algorithm comparison , 1997 .

[17]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[18]  F. Becker,et al.  The impact of spectral emissivity on the measurement of land surface temperature from a satellite , 1987 .

[19]  Juan C. Jiménez-Muñoz,et al.  Spatial analysis of the homogeneity of the land surface temperature in three Spanish test sites , 2015 .

[20]  T. Carlson,et al.  An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization , 1998 .

[21]  Z. Qin,et al.  A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data , 2005 .

[22]  Carlo Ulivieri,et al.  A split window algorithm for estimating land surface temperature from satellites , 1994 .

[23]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[24]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[25]  Zhao-Liang Li,et al.  Improvements in the split-window technique for land surface temperature determination , 1994, IEEE Trans. Geosci. Remote. Sens..

[26]  L. Leung,et al.  Evaluating regional cloud-permitting simulations of the WRF model for the Tropical Warm Pool International Cloud Experiment (TWP-ICE, Darwin 2006) , 2009 .

[27]  J. Mallick,et al.  Estimation of land surface temperature over Delhi using Landsat-7 ETM+ , 2008 .

[28]  Gopinadh Rongali,et al.  A Mono-Window Algorithm for Land Surface Temperature Estimation from Landsat 8 Thermal Infrared Sensor Data : A Case Study of the Beas River Basin , India , 2018 .

[29]  Thomas Blaschke,et al.  Thermal remote sensing for land surface temperature monitoring: Maraqeh County, Iran , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[30]  Ji Zhou,et al.  Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data , 2015, Remote. Sens..

[31]  T. J. Majumdar,et al.  Surface temperature estimation in Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data , 2009 .

[32]  José A. Sobrino,et al.  ENVISAT/AATSR derived land surface temperature over a heterogeneous region , 2007 .

[33]  Offer Rozenstein,et al.  Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm , 2014, Sensors.

[34]  K. Gallo,et al.  Evaluation of the Relationship between Air and Land Surface Temperature under Clear- and Cloudy-Sky Conditions , 2011 .

[35]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[36]  Sumit Khandelwal,et al.  Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India , 2017 .

[37]  M. Romaguera,et al.  Land surface temperature retrieval from MSG1-SEVIRI data , 2004 .

[38]  Yujiu Xiong,et al.  Comparison of two split-window methods for retrieving land surface temperature from MODIS data , 2009 .

[39]  J. A. Sobrino,et al.  Surface temperature and water vapour retrieval from MODIS data , 2003 .

[40]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[41]  José A. Sobrino,et al.  Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data , 1996 .

[42]  José A. Sobrino,et al.  Improvements in land surface temperature retrieval from the Landsat series thermal band using water vapor and air temperature , 2009 .

[43]  D. Quattrochi,et al.  Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications , 1999, Landscape Ecology.

[44]  José A. Sobrino,et al.  Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco , 2000 .

[45]  S. Anbazhagan,et al.  Statistical Correlation between Land Surface Temperature (LST) and Vegetation Index (NDVI) using Multi-Temporal Landsat TM Data , 2016 .

[46]  Richard H. Cuenca,et al.  Application of Landsat to Evaluate Effects of Irrigation Forbearance , 2013, Remote. Sens..

[47]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[48]  Dale A. Quattrochi,et al.  Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends. Chapter 3 , 2014 .

[49]  Juan C. Jiménez-Muñoz,et al.  Split-Window Coefficients for Land Surface Temperature Retrieval From Low-Resolution Thermal Infrared Sensors , 2008, IEEE Geoscience and Remote Sensing Letters.

[50]  Si-Bo Duan,et al.  Land Surface Temperature , 2013 .

[51]  J. Sobrino,et al.  A generalized single‐channel method for retrieving land surface temperature from remote sensing data , 2003 .

[52]  Zhao-Liang Li,et al.  Generalized Split-Window Algorithm for Estimate of Land Surface Temperature from Chinese Geostationary FengYun Meteorological Satellite (FY-2C) Data , 2008, Sensors.

[53]  Maria Mira,et al.  Comparison of Split-Window and Single-Channel Methods for Land Surface Temperature Retrieval from MODIS and AATSR Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[54]  Fen Zhao,et al.  An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors , 2014, Sensors.

[55]  Yann Kerr,et al.  Accurate land surface temperature retrieval from AVHRR data with use of an improved split window algorithm , 1992 .

[56]  José A. Sobrino,et al.  Land surface temperature retrieval from LANDSAT TM 5 , 2004 .

[57]  John R. Schott,et al.  Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration , 2014, Remote. Sens..

[58]  Eva Rubio,et al.  Thermal band selection for the PRISM instrument: 3. Optimal band configurations , 1998 .

[59]  Surface Temperature , 2019, Dense + Green Cities.