A novel adaptive fuzzy c-means algorithm for interval data type

A novel extension of the fuzzy c-means clustering algorithm for interval data type based on an adaptive Euclidean distance is presented. The proposed method furnishes a fuzzy partition and a prototype for each cluster by optimizing a criterion based on an adaptive Euclidean distance that changes at each algorithm iteration. Experiments with real and synthetic data sets show the usefulness of this method.

[1]  Ricardo J. G. B. Campello,et al.  A fuzzy extension of the Rand index and other related indexes for clustering and classification assessment , 2007, Pattern Recognit. Lett..

[2]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[3]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[4]  G. W. Milligan,et al.  CLUSTERING VALIDATION: RESULTS AND IMPLICATIONS FOR APPLIED ANALYSES , 1996 .

[5]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[6]  Nicomedes L. Cavalcanti,et al.  A Fuzzy c-means Algorithm Based on an Adaptive L2 Minkowsky Distance , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[7]  L. Hubert,et al.  Comparing partitions , 1985 .

[8]  Francisco de A. T. de Carvalho,et al.  Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..

[9]  Francisco de A. T. de Carvalho,et al.  Partitional fuzzy clustering methods based on adaptive quadratic distances , 2006, Fuzzy Sets Syst..

[10]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[11]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[13]  Francisco de A. T. de Carvalho,et al.  Fuzzy Clustering Algorithms for Symbolic Interval Data based on L/sub 2/ Norm , 2006, 2006 IEEE International Conference on Fuzzy Systems.