Fundamentals of phase field theory

Publisher Summary This chapter discusses the fundamentals of phase field theory. This theory provides an alternative method for solving dynamical problems involving crystallization from a melt. The sharp solid liquid interface of the classical model is replaced by a diffuse interface by introducing an auxiliary variable ( , the phase field, that indicates the phase. The phase field model can be derived on the basis of an entropy functional. It is possible to formulate thermodynamically consistent phase field models for solidification from the melt, for pure materials, and for alloys, including hydrodynamics. The complexity of these models, however, increases drastically with the complexity of the system being modeled. Using these models for computations is certainly possible, especially for pure materials, and has led to a number of interesting results.

[1]  A. Karma,et al.  Multiscale random-walk algorithm for simulating interfacial pattern formation. , 2000, Physical review letters.

[2]  James A. Warren,et al.  Simulation of the cell to plane front transition during directional solidification at high velocity , 1999 .

[3]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[4]  Gunduz Caginalp,et al.  The role of microscopic anisotropy in the macroscopic behavior of a phase boundary , 1986 .

[5]  James A. Warren,et al.  The phase-field method: simulation of alloy dendritic solidification during recalescence , 1996 .

[6]  M. Gurtin,et al.  On the evolution of phase boundaries , 1992 .

[7]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[8]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[9]  G. B. McFadden,et al.  On the notion of a ξ–vector and a stress tensor for a general class of anisotropic diffuse interface models , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[11]  A. Karma,et al.  Regular Article: Modeling Melt Convection in Phase-Field Simulations of Solidification , 1999 .

[12]  G. Caginalp,et al.  Stefan and Hele-Shaw type models as asymptotic limits of the phase-field equations. , 1989, Physical review. A, General physics.

[13]  Fife,et al.  Phase-field methods for interfacial boundaries. , 1986, Physical review. B, Condensed matter.

[14]  G. Caginalp,et al.  Computation of sharp phase boundaries by spreading: the planar and spherically symmetric cases , 1991 .

[15]  Geoffrey B. McFadden,et al.  A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics , 1996, European Journal of Applied Mathematics.

[16]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[17]  Wang,et al.  Computation of the dendritic operating state at large supercoolings by the phase field model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  Paul C. Fife,et al.  Thermodynamically consistent models of phase-field type for the kinetics of phase transitions , 1990 .

[19]  J. Warren,et al.  Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method , 1995 .

[20]  G. McFadden,et al.  Effect of Surface Free Energy Anisotropy on Dendrite Tip Shape , 1999 .

[21]  C. Charach,et al.  On Thermodynamically Consistent Schemes for Phase Field Equations , 1998 .

[22]  A derivation of a phase field model with fluid properties , 1991 .

[23]  A. Karma,et al.  Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Wheeler,et al.  Phase-field models for anisotropic interfaces. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Bruce T. Murray,et al.  Simulations of experimentally observed dendritic growth behavior using a phase-field model , 1995 .

[26]  Donald M. Anderson,et al.  A diffuse-interface description of internal waves in a near-critical fluid , 1997 .

[27]  Collins,et al.  Diffuse interface model of diffusion-limited crystal growth. , 1985, Physical review. B, Condensed matter.

[28]  M. Conti PLANAR ISOTHERMAL SOLIDIFICATION FROM AN UNDERCOOLED MELT : UNSTEADY SOLUTE SEGREGATION STUDIED WITH THE PHASE-FIELD MODEL , 1997 .

[29]  A. Karma,et al.  Quantitative phase-field modeling of dendritic growth in two and three dimensions , 1996 .

[30]  M. Conti Growth of a needle crystal from an undercooled alloy melt , 1997 .

[31]  A. A. Wheeler,et al.  Thermodynamically-consistent phase-field models for solidification , 1992 .

[32]  D. W. Hoffman,et al.  A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions , 1972 .

[33]  SURFACE METAL-INSULATOR TRANSITION IN THE HUBBARD MODEL , 1998, cond-mat/9811135.

[34]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[35]  M. Conti,et al.  SOLIDIFICATION OF BINARY ALLOYS : THERMAL EFFECTS STUDIED WITH THE PHASE-FIELD MODEL , 1997 .

[36]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[37]  R. Sekerka,et al.  Proof of the symmetry of the transport matrix for diffusion and heat flow in fluid systems , 1980 .

[38]  Jeffrey C. LaCombe,et al.  Crossover Scaling in Dendritic Evolution at Low Undercooling , 1999 .

[39]  W. O. Williams,et al.  A generalized stefan condition , 1979 .

[40]  G. B. McFadden,et al.  Anisotropy of interfaces in an ordered alloy: a multiple–order–parameter model , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  A. Karma Phase-field formulation for quantitative modeling of alloy solidification. , 2001, Physical review letters.

[42]  Wheeler,et al.  Phase-field model of solute trapping during solidification. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  N. Goldenfeld,et al.  Adaptive Mesh Refinement Computation of Solidification Microstructures Using Dynamic Data Structures , 1998, cond-mat/9808216.

[44]  W. Boettinger,et al.  Prediction of solute trapping at high solidification rates using a diffuse interface phase-field theory of alloy solidification , 1994 .

[45]  Grant,et al.  Nonisothermal eutectic crystallization. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  Daniel M. Anderson,et al.  Thin interface asymptotics for an energy/entropy approach to phase-field models with unequal conductivities , 2000 .

[47]  Developments in Phase-Field Modeling of Thermoelastic and Two-Component Materials , 1999 .

[48]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[49]  Karma,et al.  Phase-field model of eutectic growth. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  P. C. Hohenberg,et al.  Renormalization-group methods for critical dynamics: I. Recursion relations and effects of energy conservation , 1974 .

[51]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[52]  J. Cahn,et al.  Theory of anisotropic growth rates in the ordering of an f.c.c. alloy , 1998 .

[53]  Department of Physics,et al.  EFFICIENT COMPUTATION OF DENDRITIC MICROSTRUCTURES USING ADAPTIVE MESH REFINEMENT , 1998 .

[54]  W. Carter,et al.  A continuum model of grain boundaries , 2000 .

[55]  John W. Cahn,et al.  Theory of crystal growth and interface motion in crystalline materials , 1960 .

[56]  Geoffrey B. McFadden,et al.  Solute trapping and solute drag in a phase-field model of rapid solidification , 1998 .

[57]  Paul C. Fife,et al.  Solidification Fronts and Solute Trapping in a Binary Alloy , 1998, SIAM J. Appl. Math..

[58]  Geoffrey B. McFadden,et al.  Phase-field model for solidification of a eutectic alloy , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[59]  Robert F. Sekerka,et al.  Phase-field model of solidification of a binary alloy , 1998 .

[60]  Gustav Amberg,et al.  Phase-field simulation of dendritic growth in a shear flow , 1998 .

[61]  Phase field models of solidification in binary alloys:: capillarity and solute trapping effects , 1999 .

[62]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[63]  Karma,et al.  Numerical Simulation of Three-Dimensional Dendritic Growth. , 1996, Physical review letters.

[64]  J. Langer Models of Pattern Formation in First-Order Phase Transitions , 1986 .

[65]  Robert F. Sekerka,et al.  Algorithms for phase eld computation of the dentritic operating state at large supercoolings , 1996 .

[66]  J. Warren,et al.  Ostwald ripening and coalescence of a binary alloy in two dimensions using a phase-field model , 1996 .

[67]  Donald M. Anderson,et al.  A phase-field model of solidification with convection , 2000 .

[68]  Alain Karma,et al.  Multiscale finite-difference-diffusion-Monte-Carlo method for simulating dendritic solidification , 2000 .