Ultra-fast laser ablation and deposition of TiO2

In this work we report on the properties of the ablation plume and the characteristics of the films produced by ultra-fast pulsed laser deposition (PLD) of TiO2 in vacuum. Ablation was induced by using pulses with a duration of ≈300 fs at 527 nm. We discuss both the composition and the expansion dynamics of the TiO2 plasma plume, measured by exploiting time- and space-resolved emission spectroscopy and gated imaging. The properties of the TiO2 nanoparticles and nanoparticle-assembled films were characterized using different techniques, i.e. environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). It is suggested that most of the material decomposes in the form of nanoparticles.

[1]  M. Oujja,et al.  Femtosecond pulsed laser deposition of nanostructured TiO2 films , 2009 .

[2]  M. Oujja,et al.  Nanosecond pulsed laser deposition of TiO2: nanostructure and morphology of deposits and plasma diagnosis , 2009 .

[3]  J. A. Taylor,et al.  Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis , 1981 .

[4]  M. Castillejo,et al.  Structural and morphological characterization of TiO2 nanostructured films grown by nanosecond pulsed laser deposition , 2009 .

[5]  Salvatore Amoruso,et al.  Temporally and spectrally resolved analysis of a copper plasma plume produced by ultrafast laser ablation , 2009 .

[6]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[7]  Ladislav Kavan,et al.  ELECTROCHEMICAL AND PHOTOELECTROCHEMICAL INVESTIGATION OF SINGLE-CRYSTAL ANATASE , 1996 .

[8]  M. Sentis,et al.  Material decomposition mechanisms in femtosecond laser interactions with metals , 2007, 0706.1371.

[9]  D. Kelleher Database for Atomic Spectroscopy , 1995 .

[10]  W. C. Martin,et al.  NIST Atomic Spectra Database (version 2.0) (1999) | NIST , 1999 .

[11]  S. Amoruso,et al.  Propagation of a femtosecond pulsed laser ablation plume into a background atmosphere , 2008 .

[12]  S. Amoruso,et al.  Synthesis of nanocrystal films via femtosecond laser ablation in vacuum , 2006 .

[13]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[14]  J. Hermann,et al.  Plasma analyses during femtosecond laser ablation of Ti, Zr, and Hf , 2005 .

[15]  Salvatore Amoruso,et al.  Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum , 2005 .

[16]  P. A. Atanasov,et al.  Femtosecond laser ablation of nickel in vacuum , 2007 .

[17]  M. Oujja,et al.  Pulsed laser deposition of TiO2: diagnostic of the plume and characterization of nanostructured deposits , 2008 .

[18]  X. Pan,et al.  Violet luminescence in phosphorus-doped ZnO epitaxial films , 2008 .

[19]  Michael F. Becker,et al.  Laser-induced damage on single-crystal metal surfaces , 1988 .

[20]  Zhendong Hu,et al.  Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition , 2008 .

[21]  Salvatore Amoruso,et al.  Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum , 2007 .

[22]  A. G. Gaydon,et al.  The identification of molecular spectra , 1950 .

[23]  W. Kautek,et al.  Femtosecond laser ablation of silicon–modification thresholds and morphology , 2002 .