Parameter estimation, model reduction and quantum filtering

This dissertation explores the topics of parameter estimation and model reduction in the context of quantum filtering. Chapters 2 and 3 provide a review of classical and quantum probability theory, stochastic calculus and filtering. Chapter 4 studies the problem of quantum parameter estimation and introduces the quantum particle filter as a practical computational method for parameter estimation via continuous measurement. Chapter 5 applies these techniques in magnetometry and studies the estimator's uncertainty scalings in a double-pass atomic magnetometer. Chapter 6 presents an efficient feedback controller for continuous-time quantum error correction. Chapter 7 presents an exact model of symmetric processes of collective qubit systems.

[1]  A. Keyhani,et al.  Maximum Likelihood Estimation of Generator Stability Constants Using SSFR Test Data , 1991, IEEE Power Engineering Review.

[2]  F. R. Gantmakher The Theory of Matrices , 1984 .

[4]  Ali Keyhani,et al.  On-line synchronous machine parameter estimation from small disturbance operating data , 1995 .

[5]  William S. Levine,et al.  The Control Handbook , 2005 .

[6]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[7]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[8]  Charles Concordia,et al.  Power System Stability , 1985, IEEE Power Engineering Review.

[9]  Dick Duffey,et al.  Power Generation , 1932, Transactions of the American Institute of Electrical Engineers.

[10]  L. E. Unnewehr,et al.  Electromechanics and Electric Machines , 1979 .

[11]  Gabriel Kron Equivalent Circuits of Electric Machinery. , 1967 .

[12]  Igor Volovich,et al.  Quantum Theory and Its Stochastic Limit , 2002 .

[13]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[14]  Kimble,et al.  Precision measurement beyond the shot-noise limit. , 1987, Physical review letters.

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[16]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[17]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[18]  Innocent Kamwa,et al.  A two-factor saturation model for synchronous machines with multiple rotor circuits , 1995 .

[19]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part II: Approximate Model , 1970 .

[20]  Andrew J. Landahl,et al.  Efficient feedback controllers for continuous-time quantum error correction , 2007, 0711.0689.

[21]  H. H. Happ,et al.  Power System Control and Stability , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Ali Keyhani,et al.  Identification of synchronous machine linear parameters from standstill step voltage input data , 1995 .

[23]  John Gough Quantum Flows as Markovian Limit of Emission, Absorption and Scattering Interactions , 2003 .

[24]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[25]  The Stratonovich Interpretation of Quantum Stochastic Approximations , 1999 .

[26]  Gerard J. Milburn,et al.  Practical scheme for error control using feedback , 2004 .

[27]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[28]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[29]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[30]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[31]  Bradley A. Chase,et al.  Collective processes of an ensemble of spin- 1 ∕ 2 particles , 2008, 0805.2911.

[32]  Howard Mark Wiseman Quantum trajectories and feedback , 1994 .

[33]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[34]  E. Thompson,et al.  THEORY OF ERRORS AND GENERALIZED MATRIX INVERSES , 1975 .

[35]  Robert L. Winchester,et al.  Direct- and Quadrature-Axis Equivalent Circuits for Solid-Rotor Turbine Generators , 1969 .

[36]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[37]  A. J. Morris,et al.  Synchronous Generator Transient Control: Part I -Theory and Evaluation of Alternative Mathematical Models , 1973 .

[38]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[39]  L.P. Huelsman A handbook of active filters , 1982, Proceedings of the IEEE.

[40]  Kurt Jacobs,et al.  Quantum error correction for continuously detected errors with any number of error channels per qubit , 2004 .

[41]  Ali Keyhani,et al.  Identification of armature, field, and saturated parameters of a large steam turbine-generator from operating data , 2000 .

[42]  Chris H. Pappas,et al.  The Visual C++ Handbook , 1994 .

[43]  H. Carmichael An open systems approach to quantum optics , 1993 .

[44]  C.C. Lee,et al.  A weighted-least-squares parameter estimator for synchronous machines , 1977, IEEE Transactions on Power Apparatus and Systems.

[45]  Andrew J. Landahl,et al.  Universal quantum walks and adiabatic algorithms by 1D Hamiltonians , 2008, 0802.1207.

[46]  M. Rédei,et al.  Quantum probability theory , 2006, quant-ph/0601158.

[47]  A. Keyhani,et al.  The Effects of Noise on Frequency-Domain Parameter Estimation of Synchronous Machine Models , 1989, IEEE Power Engineering Review.

[48]  M. G. Salvadori,et al.  Numerical methods in engineering , 1955 .

[49]  A. C. Doherty,et al.  Sensitivity optimization in quantum parameter estimation , 2001 .

[50]  Klaus Mølmer,et al.  Polarization squeezing by optical faraday rotation. , 2006, Physical review letters.

[51]  A. Shiryayev,et al.  Statistics of Random Processes I: General Theory , 1984 .

[52]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[53]  A. Doherty,et al.  Robust quantum parameter estimation: Coherent magnetometry with feedback (16 pages) , 2003, quant-ph/0309101.

[54]  S. L. Adler,et al.  Martingale models for quantum state reduction , 2001 .

[55]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[56]  D. K. Sharma,et al.  Benefit Assessment of Finite-Element Based Generator Saturation Model , 1987, IEEE Transactions on Power Systems.

[57]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[58]  Elias Kyriakides,et al.  Synchronous machine parameter estimation using a visual platform , 2001, 2001 Power Engineering Society Summer Meeting. Conference Proceedings (Cat. No.01CH37262).

[59]  Luc Bouten,et al.  Filtering and Control in Quantum Optics , 2004 .

[60]  Robert Rosenberg Electric motor repair , 1987 .

[61]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[62]  Masahiro Yanagisawa,et al.  Quantum smoothing , 2007, 0711.3885.

[63]  William L. Goffe,et al.  SIMANN: FORTRAN module to perform Global Optimization of Statistical Functions with Simulated Annealing , 1992 .

[64]  Magnetic Field Estimation at and beyond 1/N Scaling via an Effective Nonlinearity , 2007, 0708.2730.

[65]  B. Kümmerer,et al.  Elements of quantum probability , 1996 .

[66]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[67]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[68]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[69]  Ali Keyhani,et al.  Methodology development for estimation of armature circuit and field winding parameters of large utility generators , 1999 .

[70]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[71]  Fredrik Gustafsson,et al.  Determining the initial states in forward-backward filtering , 1996, IEEE Trans. Signal Process..

[72]  Dierk Schroder Intelligent Observer and Control Design for Nonlinear Systems , 2000 .

[73]  S. Banach,et al.  Sur une généralisation du problème de la mesure , 1929 .

[74]  Yao-nan Yu,et al.  Experimental Determination of Exact Equivalent Circuit Parameters of Synchronous Machines , 1971 .

[75]  Jin-Cheng Wang,et al.  Identification of synchronous generator saturation models based on on-line digital measurements , 1995 .

[76]  Enrique Acha,et al.  Power Systems Harmonics: Computer Modelling and Analysis , 2001 .

[77]  Bradley A. Chase,et al.  Single-shot parameter estimation via continuous quantum measurement , 2008, 0811.0601.

[78]  Surajit Chattopadhyay,et al.  Electric Power Quality , 2011 .

[79]  D. C. Macdonald,et al.  Analysis of Synchronous Reactances as a Function of Airgap MMF , 2002 .

[80]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[81]  Carlton M. Caves,et al.  Nonlinear quantum metrology using coupled nanomechanical resonators , 2008, 0804.4540.

[82]  Richard L. Branham Scientific data analysis - an introduction to overdetermined systems , 1990 .

[83]  Luigi Accardi,et al.  The weak coupling limit as a quantum functional central limit , 1990 .

[84]  E. S. Pearson Biometrika tables for statisticians , 1967 .

[85]  Ali Keyhani,et al.  An algebraic approach for identifying operating point dependent parameters of synchronous machines using orthogonal series expansions , 2001 .

[86]  Hadi Saadat,et al.  Power System Analysis , 1998 .

[87]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[88]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[89]  S. Joe,et al.  First Steps in Numerical Analysis. , 1978 .

[90]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part III: Implementation , 1970 .

[91]  A. Datta,et al.  Quantum-limited metrology with product states , 2007, 0710.0285.

[92]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[93]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[94]  William F. Tinney,et al.  State Estimation in Power Systems Part II: Implementation and Applications , 1970 .

[95]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[96]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[97]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[98]  E. Wong,et al.  ON THE RELATION BETWEEN ORDINARY AND STOCHASTIC DIFFERENTIAL EQUATIONS , 1965 .

[99]  A. Perelson,et al.  Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. , 1994, Bulletin of mathematical biology.

[100]  P. Dorato,et al.  State variables for engineers , 1967 .

[101]  Ali Keyhani,et al.  Synchronous machine parameter estimation using the Hartley series , 2001 .

[102]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[103]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[104]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[105]  Nathaniel E. Helwig,et al.  An Introduction to Linear Algebra , 2006 .

[106]  Ivan H Deutsch,et al.  Continuous weak measurement and nonlinear dynamics in a cold spin ensemble. , 2004, Physical review letters.

[107]  K B Whaley,et al.  Coherence-preserving quantum bits. , 2001, Physical review letters.

[108]  W. A. Lewis A Basic Analysis of Synchronous Machines-Part I , 1958, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[109]  Ramon van Handel,et al.  Optimal error tracking via quantum coding and continuous syndrome measurement , 2005 .

[110]  A. Parkins,et al.  Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED. , 2007, Physical review letters.

[111]  Kate Gregory Using Visual C++ 6 , 1997 .

[112]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[113]  Elias Kyriakides,et al.  An observer for the estimation of synchronous generator damper currents for use in parameter identification , 2003 .

[114]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[115]  K. E. Bollinger,et al.  A Method for on-Line Identification of Power System Model Parameters in the Presence of Noise , 1982, IEEE Transactions on Power Apparatus and Systems.

[116]  P. Kundur,et al.  Adaptation and Validation of Turbogenerator Model Parameters Through On-Line Frequency Response Measurements , 1981, IEEE Transactions on Power Apparatus and Systems.

[117]  John K. Stockton,et al.  REVIEW ARTICLE: Modelling and feedback control design for quantum state preparation , 2005 .

[118]  H. Mabuchi Derivation of Maxwell-Bloch-type equations by projection of quantum models , 2008, 0803.2887.

[119]  J. Kormylo,et al.  Two-pass recursive digital filter with zero phase shift , 1974 .

[120]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[121]  A. Keyhani,et al.  Maximum Likelihood Estimation of Solid-Rotor Synchronous Machine Parameters from SSFR Test Data , 1989, IEEE Power Engineering Review.

[122]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[123]  W. L. Peterson,et al.  Multiple bad data detection in power system state estimation using linear programming , 1988, [1988] Proceedings. The Twentieth Southeastern Symposium on System Theory.

[124]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[125]  B. Julsgaard,et al.  Experimental long-lived entanglement of two macroscopic objects , 2001, Nature.

[126]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[127]  L. Hannett,et al.  Validation of Synchronous Machine Models and Derivation of Model Parameters from Tests , 1981, IEEE Transactions on Power Apparatus and Systems.

[128]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[129]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[130]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[131]  Hideo Mabuchi,et al.  Characterizing the entanglement of symmetric many-particle spin-1/2 systems , 2003 .

[132]  R. Stanton,et al.  Numerical methods for science and engineering , 1962 .

[133]  G. T. Heydt,et al.  Computer Analysis Methods for Power Systems , 1986 .

[134]  N. C. Kar,et al.  Methods for Determining the Q-Axis Saturation Characteristics of Salient-Pole Synchronous Machines from the Measured D-Axis Characteristics , 2002, IEEE Power Engineering Review.

[135]  Ali Keyhani,et al.  Maximum likelihood estimation of synchronous machine parameters from standstill time response data , 1994 .

[136]  P. Kundur,et al.  Recent trends and progress in synchronous machine modeling in the electric utility industry , 1974 .

[137]  Emil Levi Modelling of magnetic saturation in smooth air-gap synchronous machines , 1997 .

[138]  L. Jiang,et al.  Quantum-limited measurements of atomic scattering properties , 2007, 0706.3376.

[139]  Addition or arbitrary number of identical angular momenta , 1977 .

[140]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[141]  R. Handel The stability of quantum Markov filters , 2007, 0709.2216.

[142]  Viacheslav P. Belavkin Optimal Measurement and Control in Quantum Dynamical Systems , 2005 .

[143]  Paul C. Krause,et al.  Simulation of Symmetrical Induction Machinery , 1965 .

[144]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[145]  Viacheslav P. Belavkin,et al.  Non-Demolition Measurement and Control in Quantum Dynamical Systems , 1987 .

[146]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[147]  Toshiaki Murata,et al.  A New Method to Evaluate the -Axis Saturation Characteristic of Cylindrical-Rotor Synchronous Generator , 2000 .

[148]  Jun Ye,et al.  Full observation of single-atom dynamics in cavity QED , 1999 .

[149]  Hideo Mabuchi,et al.  Quantum stochastic calculus approach to modeling double-pass atom-field coupling , 2008 .

[150]  R. H. Park,et al.  Two-reaction theory of synchronous machines generalized method of analysis-part I , 1929, Transactions of the American Institute of Electrical Engineers.

[151]  Tensor polarizability and dispersive quantum measurement of multilevel atoms (14 pages) , 2005, quant-ph/0501033.

[152]  A. M. El-Serafi,et al.  Saturated synchronous reactances of synchronous machines , 1992 .

[153]  Ali Keyhani,et al.  Development of a neural network based saturation model for synchronous generator analysis , 1995 .

[154]  Ilya W. Slutsker Bad Data Identification in Power System State Estimation Based on Measurement Compensation and Linear Residual Calculation , 1989, IEEE Power Engineering Review.

[155]  Paul C. Krause,et al.  Analysis of electric machinery , 1987 .

[156]  Kazumasa Ide,et al.  Analysis of saturated synchronous reactances of large turbine generator by considering cross-magnetizing reactances using finite elements , 1999 .

[157]  R. C. Beck,et al.  Time-domain identification of synchronous machine parameters from simple standstill tests , 1990 .

[158]  Hideo Mabuchi,et al.  Scattering of polarized laser light by an atomic gas in free space: A quantum stochastic differential equation approach , 2007 .

[159]  C. Helstrom Quantum detection and estimation theory , 1969 .

[160]  S. J. Levine,et al.  An Analysis of the Induction Motor , 1935, Transactions of the American Institute of Electrical Engineers.

[161]  Hideo Mabuchi,et al.  Quantum Kalman filtering and the Heisenberg limit in atomic magnetometry. , 2003, Physical review letters.

[162]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[163]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[164]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[165]  R G Harley,et al.  Estimating Synchronous Machine Electrical Parameters from Frequency Response Tests , 1987, IEEE Transactions on Energy Conversion.

[166]  Ramon van Handel,et al.  Quantum projection filter for a highly nonlinear model in cavity QED , 2005 .

[167]  A Smerzi,et al.  Phase detection at the quantum limit with multiphoton Mach-Zehnder interferometry. , 2007, Physical review letters.

[168]  W. Reid,et al.  Riccati Differential Equations , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[169]  A. Silberfarb,et al.  Quantum control of the hyperfine spin of a Cs atom ensemble. , 2007, Physical review letters.

[170]  Paul M. Anderson,et al.  Subsynchronous resonance in power systems , 1989 .

[171]  L. Hove,et al.  Quantum-mechanical perturbations giving rise to a statistical transport equation , 1954 .

[172]  E. Polzik,et al.  Spin squeezed atoms: a macroscopic entangled ensemble created by light , 1999 .