A Practical Guide to Calibration of a GSSHA Hydrologic Model Using ERDC Automated Model Calibration Software - Effective and Efficient Stochastic Global Optimization

Abstract : The objective of this article is to demonstrate, by way of example(s), how to use our implementation of the MLSL method for model independent parameter estimation to calibrate a GSSHA hydrologic model. The purpose is not to present or focus on the theory which underlies the parameter estimation method, but rather to carefully describe how to use the ERDC software implementation of MLSL that accommodates the PEST model independent interface to calibrate a GSSHA hydrologic model. Given the computational expense associated with global optimization, we will initially consider variations of our MLSL implementation on a computationally efficient test problem in attempts to provide the interested reader with an intuitive sense of how the method works.

[1]  Harald Kunstmann,et al.  Inverse distributed hydrological modelling of Alpine catchments , 2005 .

[2]  Richard H. McCuen,et al.  Effect of Flow Proportions on HSPF Model Calibration Accuracy , 2005 .

[3]  Brian E. Skahill,et al.  A practical guide to calibration of a GSSHA hydrologic model using ERDC automated model calibration software -efficient local search , 2012 .

[4]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[5]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[6]  Hatim O. Sharif,et al.  On the calibration and verification of two‐dimensional, distributed, Hortonian, continuous watershed models , 2000 .

[7]  John Doherty,et al.  An advanced regularization methodology for use in watershed model calibration , 2006 .

[8]  John Doherty,et al.  Addendum to the PEST Manual , 2014 .

[9]  M. S. Moran,et al.  Using remotely-sensed estimates of soil moisture to infer soil texture and hydraulic properties across a semi-arid watershed , 2007 .

[10]  Arje Nachman,et al.  9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) , 2008 .

[11]  John Doherty,et al.  Efficient accommodation of local minima in watershed model calibration , 2006 .

[12]  Barbara Baginska,et al.  Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST , 2003, Environ. Model. Softw..

[13]  Michael Rode,et al.  Multi-objective calibration of a river water quality model—Information content of calibration data , 2007 .

[14]  J. Doherty,et al.  Role of the calibration process in reducing model predictive error , 2005 .

[15]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[16]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[17]  Fred L. Ogden,et al.  Prediction of runoff and soil moistures at the watershed scale: Effects of model complexity and parameter assignment , 2003 .

[18]  W. Wallender,et al.  Temporal instability of parameters in an event - based distributed hydrologic model applied to a small semiarid catchment , 2007 .

[19]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[20]  W. Menke Geophysical data analysis , 1984 .

[21]  Susan Frankenstein,et al.  Fast All-Season Soil STrength (FASST) , 2004 .

[22]  J. Doherty,et al.  A hybrid regularized inversion methodology for highly parameterized environmental models , 2005 .

[23]  B. Robinson,et al.  The site-scale saturated zone flow model for Yucca Mountain: calibration of different conceptual models and their impact on flow paths. , 2003, Journal of contaminant hydrology.

[24]  John Doherty,et al.  Comparison of hydrologic calibration of HSPF using automatic and manual methods , 2007 .

[25]  Brian E. Skahill,et al.  More efficient PEST compatible model independent model calibration , 2009, Environ. Model. Softw..

[26]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[27]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[28]  Francisco E. Werner,et al.  Calibration of the NEMURO nutrient-phytoplankton-zooplankton food web model to a coastal ecosystem: Evaluation of an automated calibration approach , 2007 .

[29]  V. Pauwels,et al.  Improvement of the PEST parameter estimation algorithm through Extended Kalman Filtering , 2007 .

[30]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[31]  Igor Iskra,et al.  Application of non-linear automatic optimization techniques for calibration of HSPF. , 2007, Water environment research : a research publication of the Water Environment Federation.

[32]  John Doherty,et al.  Parameter estimation and uncertainty analysis for a watershed model , 2007, Environ. Model. Softw..

[33]  A. Deletic,et al.  Sensitivity testing of a coupled Escherichia coli - : Hydrologic catchment model , 2007 .

[34]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[35]  S. Constable,et al.  Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data , 1990 .

[36]  John Doherty,et al.  Reply to discussion by Carl W. Chen "Methodologies for calibration and predictive analysis of a watershed model" , 2003 .

[37]  John Doherty,et al.  Predictive error analysis for a water resource management model , 2007 .