Theoretical and experimental dissection of DNA loop-mediated repression.

Transcriptional networks across all domains of life feature a wide range of regulatory architectures. Theoretical models now make clear predictions about how key parameters describing those architectures modulate gene expression, and the ability to construct genetic circuits with tunable parameters enables precise tests of such models. We dissect gene regulation through DNA looping by tuning network parameters such as repressor copy number, DNA binding strengths, and loop length in both thermodynamic models and experiments. Our results help clarify the short-length mechanical properties of DNA.

[1]  Siddhartha Roy,et al.  GalR represses galP1 by inhibiting the rate-determining open complex formation through RNA polymerase contact: a GalR negative control mutant. , 2004, Journal of molecular biology.

[2]  S. Leibler,et al.  DNA looping and physical constraints on transcription regulation. , 2003, Journal of molecular biology.

[3]  Donald M. Crothers,et al.  Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping , 2006, PloS one.

[4]  Ty C. Voss,et al.  Dynamic Exchange at Regulatory Elements during Chromatin Remodeling Underlies Assisted Loading Mechanism , 2011, Cell.

[5]  Rob Phillips,et al.  Sequence dependence of transcription factor-mediated DNA looping , 2012, Nucleic acids research.

[6]  P. Strevens Iii , 1985 .

[7]  Benno Müller-Hill,et al.  Repression oflacPromoter as a Function of Distance, Phase and Quality of an AuxiliarylacOperator , 1996 .

[8]  Rob Phillips,et al.  Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. , 2012, Cell reports.

[9]  Nicole A. Becker,et al.  Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli , 2007, Nucleic acids research.

[10]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[11]  Sean B. Carroll,et al.  Endless forms most beautiful : the new science of evo devo and the making of the animal kingdom , 2005 .

[12]  D. Dubnau,et al.  Noise in Gene Expression Determines Cell Fate in Bacillus subtilis , 2007, Science.

[13]  N. Fujita,et al.  GalR-mediated repression and activation of hybrid lacUV5 promoter: differential contacts with RNA polymerase. , 1998, Gene.

[14]  Eduardo A. Groisman,et al.  Evolution of Transcriptional Regulatory Circuits in Bacteria , 2009, Cell.

[15]  J. Vilar,et al.  Ab initio thermodynamic modeling of distal multisite transcription regulation , 2007, Nucleic acids research.

[16]  K Rippe,et al.  Action at a distance: DNA-looping and initiation of transcription. , 1995, Trends in biochemical sciences.

[17]  Rob Phillips,et al.  Quantitative dissection of the simple repression input–output function , 2011, Proceedings of the National Academy of Sciences.

[18]  G. K. Ackers,et al.  Quantitative model for gene regulation by lambda phage repressor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Yongli Zhang,et al.  Statistical-mechanical theory of DNA looping. , 2006, Biophysical journal.

[20]  Journal of Molecular Biology , 1959, Nature.

[21]  N. Fujita,et al.  Repression and activation of transcription by Gal and Lac repressors: involvement of alpha subunit of RNA polymerase. , 1995, The EMBO journal.

[22]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[23]  Jeffrey A. Lefstin,et al.  Allosteric effects of DNA on transcriptional regulators , 1998, Nature.

[24]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[25]  M C Mossing,et al.  Physical properties of DNA in vivo as probed by the length dependence of the lac operator looping process. , 1988, Biochemistry.

[26]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[27]  山川 裕巳,et al.  Helical wormlike chains in polymer solutions , 1997 .

[28]  S. Carroll Endless forms most beautiful : the new science of evo devo and the making of the animal kingdom , 2005 .

[29]  D. Endy Foundations for engineering biology , 2005, Nature.

[30]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  Terence Hwa,et al.  Combinatorial transcriptional control of the lactose operon of Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[33]  David Swigon,et al.  Modeling the Lac repressor-operator assembly: the influence of DNA looping on Lac repressor conformation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Weiss,et al.  Foundations for the design and implementation of synthetic genetic circuits , 2012, Nature Reviews Genetics.

[35]  Hernan G. Garcia,et al.  Transcriptional Regulation by the Numbers 2: Applications , 2004, q-bio/0412011.

[36]  Rob Phillips,et al.  Effect of Promoter Architecture on the Cell-to-Cell Variability in Gene Expression , 2010, PLoS Comput. Biol..

[37]  Christopher A. Voigt,et al.  Genetic parts to program bacteria. , 2006, Current opinion in biotechnology.

[38]  Hiromi Yamakawa,et al.  Helical Wormlike Chains in Polymer Solutions , 1997 .

[39]  M. Record,et al.  In vivo thermodynamic analysis of repression with and without looping in lac constructs. Estimates of free and local lac repressor concentrations and of physical properties of a region of supercoiled plasmid DNA in vivo. , 1993, Journal of molecular biology.

[40]  Christopher A. Voigt,et al.  Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression , 2009, Nature Biotechnology.

[41]  J. Kahn,et al.  Gene repression by minimal lac loops in vivo , 2010, Nucleic acids research.