AlGaN/AlN integrated photonics platform for the ultraviolet and visible spectral range.

We analyze a photonic integrated circuit (PIC) platform comprised of a crystalline AlxGa1-xN optical guiding layer on an AlN substrate for the ultraviolet to visible (UV-vis) wavelength range. An Al composition of x~0.65 provides a refractive index difference of ~0.1 between AlxGa1-xN and AlN, and a small lattice mismatch (< 1%) that minimizes crystal dislocations at the AlxGa1-xN/AlN interface. This small refractive index difference is beneficial at shorter wavelengths to avoid extra-small waveguide dimensions. The platform enables compact waveguides and bends with high field confinement in the wavelength range from 700 nm down to 300 nm (and potentially lower) with waveguide cross-section dimensions comparable to those used for telecom PICs such as silicon and silicon nitride waveguides, allowing for well-established optical lithography. This platform can potentially enable cost-effective, manufacturable, monolithic UV-vis photonic integrated circuits.

[1]  H. Morkoç,et al.  Measurement of AlxGa1‐xN Refractive Indices , 2001 .

[2]  Fabrice Semond,et al.  Determination of the refractive indices of AlN, GaN, and AlxGa1−xN grown on (111)Si substrates , 2003 .

[3]  S. Denbaars,et al.  Refractive index study of AlxGa1−xN films grown on sapphire substrates , 2003 .

[4]  M. Asif Khan,et al.  III–Nitride UV Devices , 2005 .

[5]  Jing Li,et al.  III-nitride-based planar lightwave circuits for long wavelength optical communications , 2005, IEEE Journal of Quantum Electronics.

[6]  Tsunenobu Kimoto,et al.  The temperature dependence of the refractive indices of GaN and AlN from room temperature up to 515 °C , 2008 .

[7]  刘喆,et al.  High quality AlGaN grown on a high temperature AlN template by MOCVD , 2009 .

[8]  Liu Zhe,et al.  High quality AlGaN grown on a high temperature AIN template by MOCVD , 2009 .

[9]  Yik-Khoon Ee,et al.  III-Nitride Photonics , 2010, IEEE Photonics Journal.

[10]  A. Winnacker,et al.  UV transparent single‐crystalline bulk AlN substrates , 2010 .

[11]  Wolfram Pernice,et al.  Integrated GaN photonic circuits on silicon (100) for second harmonic generation. , 2011, Optics express.

[12]  M. Weyers,et al.  Advances in group III-nitride-based deep UV light-emitting diode technology , 2010 .

[13]  K. Thonke,et al.  Growth and Characterization of AlN and AlGaN Epitaxial Films on AlN Single Crystal Substrates , 2011 .

[14]  Michael Kneissl,et al.  Optically pumped UV lasers grown on bulk AlN substrates , 2012 .

[15]  R. Houdré,et al.  Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities. , 2012, Optics letters.

[16]  A comparative study of UV electro-absorption modulators based on bulk III-nitride films and multiple quantum wells , 2012 .

[17]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[18]  C. Xiong,et al.  Optical frequency comb generation from aluminum nitride microring resonator. , 2013, Optics letters.

[19]  D. Wallis,et al.  Prospects of III-nitride optoelectronics grown on Si , 2013, Reports on progress in physics. Physical Society.

[20]  Chao Li,et al.  Review of Silicon Photonics Foundry Efforts , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Norihiko Kamata,et al.  Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes , 2014 .

[22]  Marko Loncar,et al.  Diamond nonlinear photonics , 2014, Nature Photonics.

[23]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[24]  C. Xiong,et al.  Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films , 2015 .

[25]  M. Gerhold,et al.  Optical characterization of Al- and N-polar AlN waveguides for integrated optics , 2015 .

[26]  R. Soref,et al.  Free-carrier electrorefraction and electroabsorption in wurtzite GaN. , 2015, Optics express.

[27]  H. Tang,et al.  Design and characterization of integrated components for SiN photonic quantum circuits. , 2016, Optics express.

[28]  Xiang Guo,et al.  Parametric down-conversion photon-pair source on a nanophotonic chip , 2016, Light: Science & Applications.