Fluid-Structure Interaction Modeling of the Orion Spacecraft Parachutes

Fluid-Structure Interaction Modeling of the Orion Spacecraft Parachutes by Creighton J. Moorman The Team for Advanced Flow Simulation and Modeling (T*AFSM) at Rice University has been developing the Stabilized Space-Time Fluid-Structure Interaction core technologies in conjunction with an array of special techniques to overcome the complexities present in modeling ringsail parachutes. Flight characteristics of single and clustered ringsail parachutes are explained. Ringsail modeling techniques are employed to examine and discern the parachute's aerodynamic characteristics. Several design modifications, including suspension line length ratio, over-inflation control line and canopy loading are investigated. The application of the ringsail modeling techniques to two and three parachutes in a cluster is demonstrated.

[1]  Tayfun E. Tezduyar,et al.  Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions , 2010 .

[2]  Tayfun E. Tezduyar,et al.  Sequentially-Coupled Arterial Fluid-Structure Interaction (SCAFSI) technique , 2009 .

[3]  W. Wall,et al.  A Solution for the Incompressibility Dilemma in Partitioned Fluid–Structure Interaction with Pure Dirichlet Fluid Domains , 2006 .

[4]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[5]  Toshio Kobayashi,et al.  Fluid-structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes , 2009 .

[6]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[7]  René de Borst,et al.  On the Nonnormality of Subiteration for a Fluid-Structure-Interaction Problem , 2005, SIAM J. Sci. Comput..

[8]  A. Sameh,et al.  Preconditioning Techniques for Nonsymmetric Linear Systems in the Computation of Incompressible Flows , 2009 .

[9]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[10]  T. Tezduyar,et al.  Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling , 2008 .

[11]  Ricardo Machin,et al.  Developing the Parachute System for NASA's Orion: An Overview at Inception , 2007 .

[12]  Roger Ohayon,et al.  Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems , 2001 .

[13]  C. E. Libbey,et al.  Wind-tunnel investigation of the static aerodynamic characteristics of a multilobe gliding parachute , 1968 .

[14]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[15]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling of ringsail parachutes , 2008 .

[16]  Tayfun E. Tezduyar,et al.  Interface projection techniques for fluid–structure interaction modeling with moving-mesh methods , 2008 .

[17]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[18]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of arterial fluid–structure interactions with patient‐specific data , 2010 .

[19]  Tayfun E. Tezduyar,et al.  Multiscale sequentially-coupled arterial FSI technique , 2010 .

[20]  Wulf G. Dettmer,et al.  On the coupling between fluid flow and mesh motion in the modelling of fluid–structure interaction , 2008 .

[21]  Tayfun E. Tezduyar,et al.  Modeling of Fluid-Structure Interactions with the Space-Time Techniques , 2006 .

[22]  P. F. Yaggy,et al.  WIND-TUNNEL TESTS OF A SERIES OF 18-FOOT-DIAMETER PARACHUTES WITH EXTENDABLE FLAPS , 1962 .

[23]  Theo W Knacke,et al.  Parachute recovery systems : design manual , 1991 .

[24]  D. Peric,et al.  A computational framework for fluid–structure interaction: Finite element formulation and applications , 2006 .

[25]  Kenneth J. Desabrais,et al.  A Desktop Application to Simulate Cargo Drop Tests , 2005 .

[26]  Angela C. Taylor,et al.  The DCLDYN Parachute Inflation and Trajectory Analysis Tool - An Overview , 2005 .

[27]  Tayfun E. Tezduyar,et al.  Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces , 2007 .

[28]  Arif Masud,et al.  A Multiscale/stabilized Formulation of the Incompressible Navier–Stokes Equations for Moving Boundary Flows and Fluid–structure Interaction , 2006 .

[29]  Toshio Kobayashi,et al.  Influence of wall elasticity on image-based blood flow simulations , 2004 .

[30]  Hans-Joachim Bungartz,et al.  Fluid-Structure Interaction on Cartesian Grids: Flow Simulation and Coupling Environment , 2006 .

[31]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[32]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[33]  Tayfun E. Tezduyar,et al.  Fluid–structure interaction modeling and performance analysis of the Orion spacecraft parachutes , 2011 .

[34]  T. Tezduyar,et al.  Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—Dependence of the effect on the aneurysm shape , 2007 .

[35]  T. Tezduyar,et al.  A parallel 3D computational method for fluid-structure interactions in parachute systems , 2000 .

[36]  Tayfun E. Tezduyar,et al.  Massively parallel finite element simulation Of compressible and incompressible flows , 1994 .

[37]  Yuri Bazilevs,et al.  Determination of Wall Tension in Cerebral Artery Aneurysms by Numerical Simulation , 2008, Stroke.

[38]  Eugene L. Haak,et al.  Stability and Drag of Parachutes with Varying Effective Porosity , 1971 .

[39]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[40]  A. Sameh,et al.  A nested iterative scheme for computation of incompressible flows in long domains , 2008 .

[41]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[42]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Arterial fluid mechanics (Int. J. Numer. Meth. Fluids (in press) (DOI:10.1002/fld.1443)) , 2007 .

[43]  Arif Masud,et al.  An adaptive mesh rezoning scheme for moving boundary flows and fluid-structure interaction , 2007 .

[44]  Tayfun E. Tezduyar,et al.  Space–time finite element computation of complex fluid–structure interactions , 2010 .

[45]  Tayfun E. Tezduyar,et al.  Modelling of fluid–structure interactions with the space–time finite elements: Solution techniques , 2007 .

[46]  Tayfun E. Tezduyar,et al.  Modeling of fluid–structure interactions with the space–time finite elements: contact problems , 2008 .

[47]  Toshiaki Hisada,et al.  Fluid–structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method , 2007 .

[48]  D. Wolf,et al.  A Steady Rotation Motion for a Cluster of Parachutes , 2005 .

[49]  Michael L. Accorsi,et al.  Parachute fluid-structure interactions: 3-D computation , 2000 .

[50]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[51]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[52]  Giovanna Guidoboni,et al.  FLUID-STRUCTURE INTERACTION IN BLOOD FLOW , 2006 .

[53]  Toshio Kobayashi,et al.  Influence of wall elasticity in patient-specific hemodynamic simulations , 2007 .

[54]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[55]  Tayfun E. Tezduyar,et al.  Solution techniques for the fully discretized equations in computation of fluid–structure interactions with the space–time formulations , 2006 .

[56]  Kenji Takizawa,et al.  Patient‐specific arterial fluid–structure interaction modeling of cerebral aneurysms , 2011 .

[57]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[58]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[59]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[60]  S. Mittal,et al.  Massively parallel finite element computation of incompressible flows involving fluid-body interactions , 1994 .

[61]  Murat Manguoglu,et al.  Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement , 2010 .

[62]  Rainald Löhner,et al.  Extending the Range and Applicability of the Loose Coupling Approach for FSI Simulations , 2006 .

[63]  Michael L. Accorsi,et al.  CURRENT 3-D STRUCTURAL DYNAMIC FINITE ELEMENT MODELING CAPABILITIES , 1997 .

[64]  T. Tezduyar,et al.  Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique , 2008 .

[65]  T. Tezduyar,et al.  Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures , 2006 .

[66]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[67]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[68]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[69]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[70]  Toshio Kobayashi,et al.  Influence of wall thickness on fluid–structure interaction computations of cerebral aneurysms , 2010 .

[71]  Roland Wüchner,et al.  Algorithmic treatment of shells and free form-membranes in FSI , 2006 .

[72]  Tayfun E. Tezduyar,et al.  PARALLEL FINITE ELEMENT SIMULATION OF 3D INCOMPRESSIBLE FLOWS: FLUID-STRUCTURE INTERACTIONS , 1995 .

[73]  Ryo Torii,et al.  Role of 0D peripheral vasculature model in fluid–structure interaction modeling of aneurysms , 2010 .

[74]  Yuri Bazilevs,et al.  A fully-coupled fluid-structure interaction simulation of cerebral aneurysms , 2010 .

[75]  Ekkehard Ramm,et al.  A strong coupling partitioned approach for fluid–structure interaction with free surfaces , 2007 .

[76]  Tayfun E. Tezduyar,et al.  Space-time finite element techniques for computation of fluid-structure interactions , 2005 .

[77]  Toshio Kobayashi,et al.  Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation , 2006 .

[78]  Alain Lo Nonlinear dynamic analysis of cable and membrane structures , 1981 .

[79]  van Eh Harald Brummelen,et al.  An interface Newton–Krylov solver for fluid–structure interaction , 2005 .

[80]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[81]  Marek Behr,et al.  Parallel finite-element computation of 3D flows , 1993, Computer.