Effect of boron concentration on recombination at the p-Si–Al2O3 interface

We examine the surface passivation properties of Al2O3 deposited on boron-doped planar ⟨100⟩ crystalline silicon surfaces as a function of the boron concentration. Both uniformly doped and diffused surfaces are studied, with surface boron concentrations ranging from 9.2 × 1015 to 5.2 × 1019 cm−3. Atmospheric pressure chemical vapor deposition and thermal atomic layer deposition are used to deposit the Al2O3 films. The surface recombination rate of each sample is determined from photoconductance measurements together with the measured dopant profiles via numerical simulation, using the latest physical models. These values are compared with calculations based on the interface properties determined from capacitance–voltage and conductance measurements. It is found that the fundamental surface recombination velocity of electrons, Sn0, which describes the chemical passivation of the interface, is independent of the surface boron concentration Ns for Ns ≤ 3 × 1019 cm−3, and in excellent agreement with values ca...

[1]  J. Benick,et al.  Boron Emitter Passivation With Al $_{\bf 2}$ O $_{\bf 3}$ and Al $_{\bf 2}$ O $_{\bf 3}$ /SiN $_{\bm x}$ Stacks Using ALD Al $_{\bf 2}$ O $_{\bf 3}$ , 2013 .

[2]  Electrical characterization of the boron-doped Si-SiO2interface , 1985, IEEE Transactions on Electron Devices.

[3]  Armin G. Aberle,et al.  Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors , 1999 .

[4]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[5]  A. Cuevas,et al.  Surface recombination velocity of highly doped n‐type silicon , 1996 .

[6]  J. Slotboom,et al.  Unified apparent bandgap narrowing in n- and p-type silicon , 1992 .

[7]  S. Phang,et al.  Surface Passivation of Boron-Diffused p-Type Silicon Surfaces With (1 0 0) and (1 1 1) Orientations by ALD Al$_{2}$O$_{3}$ Layers , 2013, IEEE Journal of Photovoltaics.

[8]  Konstantinos Misiakos,et al.  Accurate measurements of the silicon intrinsic carrier density from 78 to 340 K , 1993 .

[9]  J. Dziewior,et al.  Auger coefficients for highly doped and highly excited silicon , 1977 .

[10]  A. Cuevas,et al.  Process Control of Reactive Sputter Deposition of AlO $_{x}$ and Improved Surface Passivation of Crystalline Silicon , 2012, IEEE Journal of Photovoltaics.

[11]  Richard M. Swanson,et al.  Studies of diffused boron emitters: saturation current, bandgap narrowing, and surface recombination velocity , 1991 .

[12]  R. Preu,et al.  Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide , 2009 .

[13]  A. Cuevas,et al.  Empirical determination of the energy band gap narrowing in highly doped n+ silicon , 2013 .

[14]  Wilhelm Warta,et al.  Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2 interface , 1992 .

[15]  D. Macdonald,et al.  Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon , 2004 .

[16]  J. Snel The doped Si/SiO2 interface , 1981 .

[17]  A. Aberle,et al.  Excellent boron emitter passivation for high‐efficiency Si wafer solar cells using AlOx/SiNx dielectric stacks deposited in an industrial inline plasma reactor , 2012 .

[18]  R. Hall Electron-Hole Recombination in Germanium , 1952 .

[19]  K. McIntosh,et al.  Surface passivation of c-Si by atmospheric pressure chemical vapor deposition of Al2O3 , 2012 .

[20]  A. Blakers,et al.  The effect of boron diffusions on the defect density and recombination at the (111) silicon-silicon oxide interface , 2008 .

[21]  A. Cuevas,et al.  General parameterization of Auger recombination in crystalline silicon , 2002 .

[22]  Richard M. Swanson,et al.  Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency , 1990 .

[23]  Jürgen Schumacher,et al.  Numerical modeling of highly doped Si:P emitters based on Fermi–Dirac statistics and self-consistent material parameters , 2002 .

[24]  C. S. Bhatia,et al.  Deposition temperature independent excellent passivation of highly boron doped silicon emitters by thermal atomic layer deposited Al2O3 , 2013 .

[25]  Rudolf Hezel,et al.  Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells , 2002 .

[26]  P. Altermatt,et al.  A freeware 1D emitter model for silicon solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[27]  S. Glunz,et al.  Improved quantitative description of Auger recombination in crystalline silicon , 2012 .

[28]  A. Aberle,et al.  Progress in Surface Passivation of Heavily Doped n-Type and p-Type Silicon by Plasma-Deposited AlO $_{\bm x}$/SiN$_{\bm x}$ Dielectric Stacks , 2013, IEEE Journal of Photovoltaics.

[29]  R. Preu,et al.  Very low surface recombination velocity of boron doped emitter passivated with plasma-enhanced chemical-vapor-deposited AlOx layers , 2012 .

[30]  Lachlan E. Black,et al.  On effective surface recombination parameters , 2014 .

[31]  A. Cuevas,et al.  Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide , 2009 .

[32]  Harold Dekkers,et al.  Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge , 2006 .

[33]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[34]  Makoto Konagai,et al.  High Quality Aluminum Oxide Passivation Layer for Crystalline Silicon Solar Cells Deposited by Parallel-Plate Plasma-Enhanced Chemical Vapor Deposition , 2009 .

[35]  P. Altermatt,et al.  Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3 , 2007 .

[36]  R. Mertens,et al.  Determination of Si-SiO/sub 2/ interface recombination parameters using a gate-controlled point-junction diode under illumination , 1988 .