Languages Defined with Modular Counting Quantifiers

We prove that a regular language defined by a boolean combination of generalized ?1-sentences built using modular counting quantifiers can be defined by a boolean combination of ?1-sentences in which only regular numerical predicates appear. The same statement, with “?1” replaced by “first-order,” is equivalent to the conjecture that the nonuniform circuit complexity class ACC is strictly contained in NC1. The argument introduces some new techniques, based on a combination of semigroup theory and Ramsey theory, which may shed some light on the general case.

[1]  Yuri Gurevich,et al.  A Logic for Constant-Depth Circuits , 1984, Inf. Control..

[2]  J. Spencer Ramsey Theory , 1990 .

[3]  Denis Thérien,et al.  Programs over semigroups of dot-depth one , 2000, Theor. Comput. Sci..

[4]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[5]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[6]  Pavel Pudlák,et al.  On the computational power of depth 2 circuits with threshold and modulo gates , 1994, STOC '94.

[7]  J. Büchi Weak Second‐Order Arithmetic and Finite Automata , 1960 .

[8]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[9]  Howard Straubing,et al.  Finite Semigroup Varieties Defined by Programs , 1997, Theor. Comput. Sci..

[10]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[11]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[12]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[13]  Howard Straubing,et al.  regular Languages Defined with Generalized Quantifiers , 1988, ICALP.

[14]  Howard Straubing,et al.  Superlinear Lower Bounds for Bounded-Width Branching Programs , 1995, J. Comput. Syst. Sci..

[15]  Howard Straubing,et al.  Regular Languages in NC¹ , 1992, J. Comput. Syst. Sci..

[16]  Ronald Fagin,et al.  Bounded-Depth, Polynomial-Size Circuits for Symmetric Functions , 1985, Theoretical Computer Science.

[17]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[18]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[19]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[20]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[21]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[22]  Howard Straubing,et al.  Non-Uniform Automata Over Groups , 1990, Inf. Comput..

[23]  Gábor Tardos,et al.  Lower bounds for (MOD p-MOD m) circuits , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).