Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines.

Fluorescent pseudomonads are gamma-proteobacteria known for their capacity to colonize various ecological niches. This adaptability is reflected by their sophisticated and diverse iron uptake systems. The majority of fluorescent pseudomonads produce complex peptidic siderophores called pyoverdines or pseudobactins, which are very efficient iron scavengers. A tremendous variety of pyoverdines has been observed, each species producing a different pyoverdine. This variety can be used as an interesting tool to study the diversity and taxonomy of fluorescent pseudomonads. Other siderophores, including newly described ones, are also produced by pseudomonads, sometimes endowed with interesting properties in addition to iron scavenging, such as formation of complexes with other metals or antimicrobial activity. Factors other than iron limitation, and different regulatory proteins also seem to influence the production of siderophores in pseudomonads and are reviewed here as well. Another peculiarity of pseudomonads is their ability to use a large number of heterologous siderophores via different TonB-dependent receptors. A first genomic analysis of receptors in four different fluorescent pseudomonads suggests that their siderophore ligand repertoire is likely to overlap, and that not all receptors recognize siderophores as ligands.

[1]  P. Thonart,et al.  Unusual traits of the pyoverdin-mediated iron acquisition system in Pseudomonas putida strain BTP1 , 2002, Biometals.

[2]  C. Ratledge,et al.  Salicylic acid is not a bacterial siderophore: a theoretical study , 2000, Biometals.

[3]  Dieter Haas,et al.  Structural genes for salicylate biosynthesis from chorismate in Pseudomonas aeruginosa , 1995, Molecular and General Genetics MGG.

[4]  N. Koedam,et al.  Detection and differentiation of microbial siderophores by isoelectric focusing and chrome azurol S overlay , 1994, Biometals.

[5]  R. Korus,et al.  Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida , 2004, Biodegradation.

[6]  S. Buysens,et al.  Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2 , 2004, Biometals.

[7]  M. Höfte,et al.  Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. , 2002, Molecular plant-microbe interactions : MPMI.

[8]  V. Braun,et al.  Iron transport and signaling in Escherichia coli , 2002, FEBS letters.

[9]  J. Ravel,et al.  Identification of new, conserved, non‐ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine , 2002, Molecular microbiology.

[10]  P. Visca,et al.  Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas , 2002, Molecular microbiology.

[11]  M. Vasil,et al.  GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes , 2002, Molecular microbiology.

[12]  P. Cornelis,et al.  Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. , 2002, Microbiology.

[13]  D. Wood,et al.  Survival of GacS/GacA Mutants of the Biological Control Bacterium Pseudomonas aureofaciens 30-84 in the Wheat Rhizosphere , 2002, Applied and Environmental Microbiology.

[14]  W. Achouak,et al.  Siderophore Typing, a Powerful Tool for the Identification of Fluorescent and Nonfluorescent Pseudomonads , 2002, Applied and Environmental Microbiology.

[15]  C. Walsh,et al.  Genetics and Assembly Line Enzymology of Siderophore Biosynthesis in Bacteria , 2002, Microbiology and Molecular Biology Reviews.

[16]  J. Goldberg,et al.  Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA. , 2002, Microbiology.

[17]  M. Vasil,et al.  Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Vasil,et al.  Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[20]  D. K. Willis,et al.  Global Regulation by gidA in Pseudomonas syringae , 2002, Journal of bacteriology.

[21]  R. Wait,et al.  The LysR-type regulator SftR is involved in soil survival and sulphate ester metabolism in Pseudomonas putida. , 2002, Environmental microbiology.

[22]  K. Poole,et al.  Differential Effects of Mutations in tonB1 on Intrinsic Multidrug Resistance and Iron Acquisition in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[23]  F. O'Gara,et al.  Phenotypic Selection and Phase Variation Occur during Alfalfa Root Colonization by Pseudomonas fluorescens F113 , 2002, Journal of bacteriology.

[24]  A. Parret,et al.  Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria , 2002 .

[25]  P. Cornelis,et al.  Siderophore-mediated iron uptake in fluorescent Pseudomonas: characterization of the pyoverdine-receptor binding site of three cross-reacting pyoverdines. , 2002, Archives of biochemistry and biophysics.

[26]  J. Sebat,et al.  Antimicrobial Properties of Pyridine-2,6-Dithiocarboxylic Acid, a Metal Chelator Produced byPseudomonas spp , 2001, Applied and Environmental Microbiology.

[27]  B. Lugtenberg,et al.  Molecular basis of plant growth promotion and biocontrol by rhizobacteria. , 2001, Current opinion in plant biology.

[28]  B. Tümmler,et al.  Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations , 2001, Archives of Microbiology.

[29]  P. Bakker,et al.  Analysis of the pmsCEAB Gene Cluster Involved in Biosynthesis of Salicylic Acid and the Siderophore Pseudomonine in the Biocontrol Strain Pseudomonas fluorescensWCS374 , 2001, Journal of bacteriology.

[30]  I. Lamont,et al.  Analysis of Promoters Recognized by PvdS, an Extracytoplasmic-Function Sigma Factor Protein fromPseudomonas aeruginosa , 2001, Journal of bacteriology.

[31]  C. Walsh,et al.  Essential PchG-Dependent Reduction in Pyochelin Biosynthesis of Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[32]  B. Lugtenberg,et al.  Molecular determinants of rhizosphere colonization by Pseudomonas. , 2001, Annual review of phytopathology.

[33]  L. Rahme,et al.  Common mechanisms for pathogens of plants and animals. , 2001, Annual review of phytopathology.

[34]  T. Chin-A-Woeng,et al.  The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type pseudomonas spp.bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[35]  M. Schäfer,et al.  Vanadium interferes with siderophore-mediated iron uptake in Pseudomonas aeruginosa. , 2000, Microbiology.

[36]  Delorme,et al.  Fitness in soil and rhizosphere of Pseudomonas fluorescens C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. , 2000, FEMS microbiology ecology.

[37]  H. A. Carty,et al.  Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. , 2000, FEMS microbiology letters.

[38]  F. Sanschagrin,et al.  Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. , 2000, FEMS microbiology letters.

[39]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[40]  Jean-Marie Meyer,et al.  Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species , 2000, Archives of Microbiology.

[41]  J. Sebat,et al.  A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). , 2000, Environmental microbiology.

[42]  B. Duffy,et al.  Controlling Instability in gacS-gacARegulatory Genes during Inoculant Production of Pseudomonas fluorescens Biocontrol Strains , 2000, Applied and Environmental Microbiology.

[43]  Ju-Young Park,et al.  Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. , 2000, International journal of systematic and evolutionary microbiology.

[44]  H. Nitanai,et al.  Impact of Siderophore Production onPseudomonas aeruginosa Infections in Immunosuppressed Mice , 2000, Infection and Immunity.

[45]  M. Handfield,et al.  In Vivo-Induced Genes in Pseudomonas aeruginosa , 2000, Infection and Immunity.

[46]  K. Poole,et al.  A second tonB gene in Pseudomonas aeruginosa is linked to the exbB and exbD genes. , 2000, FEMS microbiology letters.

[47]  J. Goldberg 'Pseudomonas '99, The Seventh International Congress on Pseudomonas: Biotechnology and Pathogenesis', organized by the American Society for Microbiology, was held in Maui, HI, USA, 1–5 September 1999.Pseudomonas: global bacteria , 2000 .

[48]  N. Koedam,et al.  Quinolobactin, a New Siderophore ofPseudomonas fluorescens ATCC 17400, the Production of Which Is Repressed by the Cognate Pyoverdine , 2000, Applied and Environmental Microbiology.

[49]  C. Ratledge,et al.  Iron metabolism in pathogenic bacteria. , 2000, Annual review of microbiology.

[50]  M. Vasil,et al.  Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. , 2000, Microbiology.

[51]  V. Venturi,et al.  Cloning and characterisation of the rpoS gene from plant growth-promoting Pseudomonas putida WCS358: RpoS is not involved in siderophore and homoserine lactone production. , 1999, Biochimica et biophysica acta.

[52]  G. Pessi,et al.  Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  K. M. Lee,et al.  Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  C. Walsh,et al.  Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: In vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. , 1999, Biochemistry.

[55]  R. Crawford,et al.  Identification of an Extracellular Catalyst of Carbon Tetrachloride Dehalogenation from Pseudomonas stutzeri Strain KC as Pyridine-2,6-bis(thiocarboxylate) , 1999 .

[56]  D. Hassett,et al.  Effect of rpoS Mutation on the Stress Response and Expression of Virulence Factors in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[57]  P. Cornelis,et al.  Uptake of Pyocin S3 Occurs through the Outer Membrane Ferripyoverdine Type II Receptor of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[58]  D. Wood,et al.  Two-Component Transcriptional Regulation of N -Acyl-Homoserine Lactone Production inPseudomonas aureofaciens , 1999, Applied and Environmental Microbiology.

[59]  C. Clark,et al.  PYOVERDINE PRODUCTION BY PSEUDOMONAS AERUGINOSA EXPOSED TO METALS OR AN OXIDATIVE STRESS AGENT , 1999 .

[60]  J. Metraux,et al.  Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. , 1999, Molecular plant-microbe interactions : MPMI.

[61]  V. Braun,et al.  Bacterial solutions to the iron-supply problem. , 1999, Trends in biochemical sciences.

[62]  P. Thonart,et al.  Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. , 1999 .

[63]  B. Lugtenberg,et al.  What makes Pseudomonas bacteria rhizosphere competent? , 1999, Environmental microbiology.

[64]  H. Leclerc,et al.  Taxonomic study of bacteria isolated from natural mineral waters: proposal of Pseudomonas jessenii sp. nov. and Pseudomonas mandelii sp. nov. , 1999, Systematic and applied microbiology.

[65]  K. Poole,et al.  The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of P. aeruginosa PAO1 and P. fluorescens ATCC 13525. , 1999, FEMS microbiology letters.

[66]  C. Reimmann,et al.  Dihydroaeruginoic acid synthetase and pyochelin synthetase, products of the pchEF genes, are induced by extracellular pyochelin in Pseudomonas aeruginosa. , 1998, Microbiology.

[67]  J. M. Meyer,et al.  Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. , 1998, FEMS microbiology letters.

[68]  N. Koedam,et al.  Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. , 1998 .

[69]  K. Poole,et al.  Influence of the TonB Energy-Coupling Protein on Efflux-Mediated Multidrug Resistance in Pseudomonas aeruginosa , 1998, Antimicrobial Agents and Chemotherapy.

[70]  L. van der Fits,et al.  A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  H. Budzikiewicz,et al.  Corrugatin, a Lipopeptide Siderophore from Pseudomonas corrugata , 1998 .

[72]  W. Kisaalita,et al.  Fluorescent Pseudomonad Pyoverdines Bind and Oxidize Ferrous Ion , 1998, Applied and Environmental Microbiology.

[73]  H. Budzikiewicz Siderophores of Fluorescent Pseudomonads , 1997, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[74]  V. Braun Avoidance of iron toxicity through regulation of bacterial iron transport. , 1997, Biological chemistry.

[75]  C. D. Cox,et al.  Augmentation of oxidant injury to human pulmonary epithelial cells by the Pseudomonas aeruginosa siderophore pyochelin , 1997, Infection and immunity.

[76]  P. Visca,et al.  Biosynthesis of pyochelin and dihydroaeruginoic acid requires the iron-regulated pchDCBA operon in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[77]  P. Cornelis,et al.  Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. , 1997, Microbiology.

[78]  K. Schleifer,et al.  Recent Changes in the Classification of the Pseudomonads: an Overview , 1996 .

[79]  B. Hoste,et al.  DNA relatedness among Pseudomonas strains isolated from natural mineral waters and proposal of Pseudomonas veronii sp. nov. , 1996, International journal of systematic bacteriology.

[80]  D. Heinrichs,et al.  The Pseudomonas aeruginosa tonB gene encodes a novel TonB protein. , 1996, Microbiology.

[81]  L. Gram,et al.  Pseudomonine (I), an Isoxazolidone with Siderophoric Activity from Pseudomonas fluorescens AH2 Isolated from Lake Victorian Nile Perch. , 1996 .

[82]  A. Neely,et al.  Pyoverdin is essential for virulence of Pseudomonas aeruginosa , 1996, Infection and immunity.

[83]  J. Neilands,et al.  Siderophores: Structure and Function of Microbial Iron Transport Compounds (*) , 1995, The Journal of Biological Chemistry.

[84]  L. Gram,et al.  Pseudomonine, an isoxazolidone with siderophoric activity from Pseudomonas fluorescens AH2 isolated from Lake Victorian Nile perch , 1995 .

[85]  P. Bakker,et al.  Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. , 1995 .

[86]  M J Dybas,et al.  Localization and Characterization of the Carbon Tetrachloride Transformation Activity of Pseudomonas sp. Strain KC , 1995, Applied and environmental microbiology.

[87]  T. Merriman,et al.  Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases , 1995, Journal of bacteriology.

[88]  M. Mergeay,et al.  The sss gene product, which affects pyoverdin production in Pseudomonas aeruginosa 7NSK2, is a site‐specific recombinease , 1994, Molecular microbiology.

[89]  R. Ankenbauer,et al.  FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors , 1994, Journal of bacteriology.

[90]  M. Guerinot Microbial iron transport. , 1994, Annual review of microbiology.

[91]  D. Heinrichs,et al.  Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[92]  H Budzikiewicz,et al.  Secondary metabolites from fluorescent pseudomonads. , 1993, FEMS microbiology reviews.

[93]  K. Poole,et al.  Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa , 1993, Journal of bacteriology.

[94]  P. Visca,et al.  Metal regulation of siderophore synthesis in Pseudomonas aeruginosa and functional effects of siderophore-metal complexes , 1992, Applied and environmental microbiology.

[95]  P. Bakker,et al.  Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47 , 1992, Applied and environmental microbiology.

[96]  A. W. Smith,et al.  The pyocin Sa receptor of Pseudomonas aeruginosa is associated with ferripyoverdin uptake , 1992, Journal of bacteriology.

[97]  J. Loper,et al.  Lack of evidence for a role of antifungal metabolite production by Pseudomonas fluorescens Pf-5 in biological control of Pythium damping-off of cucumber , 1992 .

[98]  J. Buyer,et al.  Current ReviewSiderophores in Microbial Interactions on Plant Surfaces , 1991 .

[99]  T. Paulitz,et al.  Lack of a role for fluorescent siderophore production in the biological control of Pythium damping-off of cucumber by a strain of Pseudomonas putida , 1991 .

[100]  C. D. Cox,et al.  Possible role of bacterial siderophores in inflammation. Iron bound to the Pseudomonas siderophore pyochelin can function as a hydroxyl radical catalyst. , 1990, The Journal of clinical investigation.

[101]  P. Cornelis,et al.  Evidence for different pyoverdine-mediated iron uptake systems among Pseudomonas aeruginosa strains , 1989, Infection and immunity.

[102]  C. Keel Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions , 1989 .

[103]  J. M. Meyer,et al.  Specificity of pyoverdine-mediated iron uptake among fluorescent Pseudomonas strains , 1988, Journal of bacteriology.

[104]  J. Loper Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain , 1988 .

[105]  R. Cook,et al.  Role of siderophores in suppression of Pythium species and production of increased-growth response to wheat by fluorescent pseudomonads , 1988 .

[106]  J. Neilands,et al.  Universal chemical assay for the detection and determination of siderophores. , 1987, Analytical biochemistry.

[107]  J. Buyer,et al.  Iron transport-mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. , 1986, The Journal of biological chemistry.

[108]  J. C. Cook,et al.  Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[109]  G. Pulverer,et al.  8-Hydroxy-4-methoxy-monothiochinaldinsäure - eine weitere Thiosäure aus Pseudomonas [1]. / 8-Hydroxy-4-methoxymonothioquinaldic Acid - a Further Thioacid from Pseudomonas , 1980 .

[110]  M. Abdallah,et al.  The Siderochromes of Non-fluorescent Pseudomonads: Production of Nocardamine by Pseudomonas stutzeri , 1980 .

[111]  G. Pulverer,et al.  An Fe(II) complex of pyridine-2,6-di-(monothiocarboxylic acid) - a novel bacterial metabolic product , 1978 .