Variational Properties of Value Functions
暂无分享,去创建一个
Michael P. Friedlander | Aleksandr Y. Aravkin | James V. Burke | M. Friedlander | J. Burke | A. Aravkin
[1] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[2] Tomaso A. Poggio,et al. Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..
[3] James V. Burke,et al. Robust and Trend-following Kalman Smoothers using Student's t , 2010, 1001.3907.
[4] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[5] Bhaskar D. Rao,et al. Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.
[6] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[7] D. Donoho,et al. Sparse nonnegative solution of underdetermined linear equations by linear programming. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[8] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[9] Richard Tapia. The Isoperimetric Problem Revisited : Extracting a Short Proof of Sufficiency from Euler ’ s 1744 Approach to Necessity ∗ , 2013 .
[10] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[11] Junbin Gao,et al. Robust L1 Principal Component Analysis and Its Bayesian Variational Inference , 2008, Neural Computation.
[12] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[13] W. Sharpe,et al. Mean-Variance Analysis in Portfolio Choice and Capital Markets , 1987 .
[14] Zoubin Ghahramani,et al. A Unifying Review of Linear Gaussian Models , 1999, Neural Computation.
[15] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[16] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[17] I. Ekeland,et al. Convex analysis and variational problems , 1976 .
[18] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[19] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[20] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[21] C. Combari,et al. Sous-différentiels de fonctions convexes composées , 1994 .
[22] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[23] David J. C. MacKay,et al. BAYESIAN NON-LINEAR MODELING FOR THE PREDICTION COMPETITION , 1996 .
[24] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[25] G. Pillonetto,et al. An $\ell _{1}$-Laplace Robust Kalman Smoother , 2011, IEEE Transactions on Automatic Control.
[26] Saburou Saitoh,et al. Theory of Reproducing Kernels and Its Applications , 1988 .
[27] Aleksandr Y. Aravkin,et al. Sparse/robust estimation and Kalman smoothing with nonsmooth log-concave densities: modeling, computation, and theory , 2013, J. Mach. Learn. Res..
[28] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[29] Massimiliano Pontil,et al. Properties of Support Vector Machines , 1998, Neural Computation.
[30] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[31] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[32] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[33] George Eastman House,et al. Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .
[34] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[35] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[36] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[37] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[38] Georgios B. Giannakis,et al. Doubly Robust Smoothing of Dynamical Processes via Outlier Sparsity Constraints , 2011, IEEE Transactions on Signal Processing.
[39] Michael P. Friedlander,et al. Sparse Optimization with Least-Squares Constraints , 2011, SIAM J. Optim..
[40] David J. C. MacKay,et al. Bayesian Interpolation , 1992, Neural Computation.
[41] M. Teboulle,et al. Asymptotic cones and functions in optimization and variational inequalities , 2002 .
[42] Felix J. Herrmann,et al. Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology , 2012, IEEE Signal Processing Magazine.
[43] Bernhard Schölkopf,et al. New Support Vector Algorithms , 2000, Neural Computation.
[44] Felix J. Herrmann,et al. Robust inversion, dimensionality reduction, and randomized sampling , 2012, Math. Program..
[45] R. Brockett. Finite Dimensional Linear Systems , 2015 .
[46] Michael P. Friedlander,et al. Theoretical and Empirical Results for Recovery From Multiple Measurements , 2009, IEEE Transactions on Information Theory.
[47] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .