Estimating fibres’ material parameter distributions from limited data with the help of Bayesian inference

Abstract Numerous materials are essentially structures of discrete fibres, yarns or struts. Considering these materials at their discrete scale, one may distinguish two types of intrinsic randomness that affect the structural behaviours of these discrete structures: geometrical randomness and material randomness. Identifying the material randomness is an experimentally demanding task, because many small fibres, yarns or struts need to be tested, which are not easy to handle. To avoid the testing of hundreds of constituents, this contribution proposes an identification approach that only requires a few dozen of constituents to be tested (we use twenty to be exact). The identification approach is applied to artificially generated measurements, so that the identified values can be compared to the true values. Another question this contribution aims to answer is how precise the material randomness needs to be identified, if the geometrical randomness will also influence the macroscale behaviour of these discrete networks. We therefore also study the effect of the identified material randomness to that of the actual material randomness for three types of structures; each with an increasing level of geometrical randomness.

[1]  Tshilidzi Marwala,et al.  Finite Element Model Updating Using Bayesian Framework and Modal Properties , 2005 .

[2]  Constantinos Soutis,et al.  Generation of Micro-scale Finite Element Models from Synchrotron X-ray CT Images for Multidirectional Carbon Fibre Reinforced Composites , 2016 .

[4]  K. Ip,et al.  Parameter estimation of orthotropic plates by Bayesian sensitivity analysis , 1996 .

[5]  Cwj Cees Oomens,et al.  Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering. , 2012, Journal of biomechanics.

[6]  Laurent Orgéas,et al.  Towards the 3D in situ characterisation of deformation micro-mechanisms within a compressed bundle of fibres , 2011 .

[7]  R. C. Picu Mechanics of random fiber networks—a review , 2011 .

[8]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[9]  Francesco Ubertini,et al.  Estimation of elastic constants of thick laminated plates within a Bayesian framework , 2007 .

[10]  P. S. Koutsourelakis,et al.  A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography , 2012, 1512.05913.

[11]  Tetsu Uesaka,et al.  Direct simulations of fiber network deformation and failure , 2012 .

[12]  K. D. Murphy,et al.  A Bayesian Approach to Identifying Structural Nonlinearity using Free-Decay Response: Application to Damage Detection in Composites , 2010 .

[13]  R. C. Picu,et al.  Size effect on mechanical behavior of random fiber networks , 2013 .

[14]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[15]  Oriol Roch,et al.  Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market , 2006, Comput. Stat. Data Anal..

[16]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[17]  Patrick Ienny,et al.  Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials , 2000 .

[18]  F. Delannay,et al.  Elastic anisotropy of a transversely isotropic random network of interconnected fibres: non-triangulated network model , 2004 .

[19]  X. Cheng,et al.  Mechanics of Stochastic Fibrous Networks , 1998 .

[20]  A. Vautrin,et al.  Bayesian Identification of Elastic Constants in Multi-Directional Laminate from Moiré Interferometry Displacement Fields , 2012, Experimental Mechanics.

[21]  Werner Hürlimann,et al.  Fitting Bivariate Cumulative Returns with Copulas , 2002, Comput. Stat. Data Anal..

[22]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[23]  Raphael T. Haftka,et al.  Introduction to the Bayesian Approach Applied to Elastic Constants Identification , 2010 .

[24]  Mgd Marc Geers,et al.  A multiscale quasicontinuum method for lattice models with bond failure and fiber sliding , 2014 .

[25]  Pascal Bouvry,et al.  Management of an academic HPC cluster: The UL experience , 2014, 2014 International Conference on High Performance Computing & Simulation (HPCS).

[26]  Mgd Marc Geers,et al.  Predicting hygro-elastic properties of paper sheets based on an idealized model of the underlying fibrous network , 2015 .

[27]  Laurent Orgéas,et al.  X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites , 2008 .

[28]  J. Beck Bayesian system identification based on probability logic , 2010 .

[29]  M. Shephard,et al.  Effect of Fiber Crimp on the Elasticity of Random Fiber Networks With and Without Embedding Matrices. , 2016, Journal of applied mechanics.

[30]  Stéphane Bordas,et al.  Bayesian inference to identify parameters in viscoelasticity , 2018 .

[31]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[32]  M. Koblischka,et al.  Microstructural Analysis of Electrochemical Coated Open‐Cell Metal Foams by EBSD and Nanoindentation , 2014 .

[33]  Hedibert Freitas Lopes,et al.  Copula, marginal distributions and model selection: a Bayesian note , 2008, Stat. Comput..

[34]  R. Nelsen An Introduction to Copulas , 1998 .

[35]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[36]  Carlos González,et al.  Damage micromechanisms and notch sensitivity of glass-fiber non-woven felts: An experimental and numerical study , 2010 .

[37]  Chia-Wei Wang,et al.  Structure, Mechanics and Failure of Stochastic Fibrous Networks: Part I—Microscale Considerations , 2000 .

[38]  S. Bordas,et al.  Open-cell aluminium foams with graded coatings as passively controllable energy absorbers , 2015 .

[39]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[40]  Thomas Most,et al.  Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating , 2010 .

[41]  Curt A. Bronkhorst,et al.  Modelling paper as a two-dimensional elastic-plastic stochastic network , 2003 .

[42]  Laa Lars Beex,et al.  The mechanical reliability of an electronic textile investigated using the virtual-power-based quasicontinuum method , 2015 .

[43]  Emmanuelle Vidal-Sallé,et al.  Development of a new 3D beam element with section changes , 2015 .

[44]  Jean-François Ganghoffer,et al.  Discrete woven structure model: yarn-on-yarn friction , 2007 .

[45]  R. C. Picu,et al.  Scaling of nonaffine deformation in random semiflexible fiber networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  P. X. Song,et al.  Multivariate Dispersion Models Generated From Gaussian Copula , 2000 .

[47]  Martine Pithioux,et al.  Numerical damage models using a structural approach: application in bones and ligaments , 2002 .

[49]  K. F. Alvin,et al.  Finite Element Model Update via Bayesian Estimation and Minimization of Dynamic Residuals , 1996 .

[50]  H. Rappel,et al.  Identifying elastoplastic parameters with Bayes’ theorem considering output error, input error and model uncertainty , 2019, Probabilistic Engineering Mechanics.

[51]  Kyung K. Choi,et al.  Identification of marginal and joint CDFs using Bayesian method for RBDO , 2009 .

[52]  Siu-Kui Au,et al.  Bayesian parameter identification of hysteretic behavior of composite walls , 2013 .

[53]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[54]  Laa Lars Beex,et al.  A discrete network model for bond failure and frictional sliding in fibrous materials , 2013 .