Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory

[1]  Wen-Ge Han,et al.  A structural model for the high-valent intermediate Q of methane monooxygenase from broken-symmetry density functional and electrostatics calculations. , 2002, Journal of the American Chemical Society.

[2]  D. Case,et al.  FeMo cofactor of nitrogenase: a density functional study of states M(N), M(OX), M(R), and M(I). , 2001, Journal of the American Chemical Society.

[3]  Per Jensen,et al.  Computational molecular spectroscopy , 2000, Nature Reviews Methods Primers.

[4]  Wolfram Koch,et al.  A Chemist's Guide to Density Functional Theory , 2000 .

[5]  K. Steiner,et al.  Mössbauer and molecular orbital study of chlorites , 2000 .

[6]  E. Oldfield,et al.  Solid-State NMR, Crystallographic and Density Functional Theory Investigation of Fe−CO and Fe−CO Analogue Metalloporphyrins and Metalloproteins† , 1999 .

[7]  F. Neese,et al.  Calculation of Zero-Field Splittings, g-Values, and the Relativistic Nephelauxetic Effect in Transition Metal Complexes. Application to High-Spin Ferric Complexes. , 1998, Inorganic chemistry.

[8]  Michael T. McMahon,et al.  An experimental and quantum chemical investigation of CO binding to heme proteins and model systems: A unified model based on 13C, 17O, and 57Fe nuclear magnetic resonance and57Fe mossbauer and infrared spectroscopies , 1998 .

[9]  E. Oldfield,et al.  Solid-state nuclear magnetic resonance spectroscopic and quantum chemical investigation of 13C and 17O chemical shift tensors, 17O nuclear quadrupole coupling tensors, and bonding in transition-metal carbonyl complexes and clusters , 1998 .

[10]  Charles E. Schulz,et al.  An Experimental and Density Functional Theoretical Investigation of Iron-57 Mössbauer Quadrupole Splittings in Organometallic and Heme-Model Compounds: Applications to Carbonmonoxy-Heme Protein Structure† , 1998 .

[11]  E. Oldfield,et al.  Iron-57 NMR chemical shifts and mössbauer quadrupole splittings in metalloporphyrins, ferrocytochrome c, and myoglobins: A density functional theory investigation , 1998 .

[12]  D. Case,et al.  Density Functional Study on the Electronic Structures of Model Peroxidase Compounds I and II , 1997 .

[13]  F. Walker,et al.  Electronic structure, porphyrin core distortion and fluxional behavior of bis-ligated low-spin iron(II) porphyrinates , 1997 .

[14]  A. Polam,et al.  Valence Electron Cloud Asymmetry from Two Points of View: A Correlation between Mössbauer Quadrupole Splittings and 57Fe NMR Chemical Shifts of Diamagnetic Iron(II) Porphyrinates , 1996 .

[15]  I. Bertini NMR of Paramagnetic Molecules , 1995 .

[16]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[17]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[18]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[19]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[20]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[21]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[22]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[23]  A. Trautwein,et al.  Comparison of ab initio quantum chemistry calculations on matrix isolated molecules with Mössbauer effect studies , 1988 .

[24]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[25]  M. Grodzicki,et al.  Spin-polarised SCC-Xα calculations for electronic- and magnetic-structure properties of (2Fe-2S) ferredoxin models , 1987 .

[26]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[27]  G. Rothberg Advances in Mössbauer spectroscopy: Studies in Physical and Theoretical Chemistry, Vol. 25; edited by B. V. Thosar and P. K. Iyengar; published by Elsevier, New York, 1983; xxiv + 924 pp.; price, Dfl. 495.00 , 1985 .

[28]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[29]  H. Wickman,et al.  Mössbauer isomer shifts , 1979 .

[30]  D. Esquivel,et al.  Electronic structure and hyperfine interactions in the Fe O 4 2 − ion , 1978 .

[31]  P. Gütlich,et al.  Mössbauer Spectroscopy and Transition Metal Chemistry , 1978 .

[32]  F. Harris,et al.  Electronic structure, pressure- and temperature-dependent charge densities, and electric field gradients in FeF 2 , 1977 .

[33]  J. Connolly,et al.  Mössbauer isomer shifts and the multiple-scattering method , 1975 .

[34]  A. Freeman,et al.  Relativistic electron densities and isomer shifts of Fe57 in iron-oxygen and iron-fluorine clusters and of iron in solid noble gases , 1975 .

[35]  Barbara M. Hopkins,et al.  Vibrational relaxation of HBr (V = 1) state in methane, water, helium, and hydrogen gaseous mixtures , 1973 .

[36]  F. Harris,et al.  Molecular orbital structure, Mössbauer isomer shift, and quadrupole splitting in iron complexes , 1973 .

[37]  N. N. GREENWOOD,et al.  Mossbauer Spectroscopy , 1966, Nature.

[38]  Klaus Ruedenberg,et al.  Paradoxical Role of the Kinetic‐Energy Operator in the Formation of the Covalent Bond , 1971 .

[39]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[40]  J. B. Mann Stability of 8p Electrons in Superheavy Elements , 1969 .

[41]  Klaus Ruedenberg,et al.  The Physical Nature of the Chemical Bond , 1962 .

[42]  L. Walker,et al.  INTERPRETATION OF THE Fe$sup 57$ ISOMER SHIFT , 1961 .

[43]  Edward I. Solomon,et al.  Inorganic electronic structure and spectroscopy , 1999 .

[44]  J. Berg,et al.  Principles Of Bioinorganic Chemistry , 1994 .

[45]  E. Bill,et al.  Iron-containing proteins and related analogs — complementary Mössbauer, EPR and magnetic susceptibility studies , 1991 .

[46]  Guillin,et al.  Ab initio study of electronic properties in free and matrix-isolated iron dihalides. , 1989, Physical review. B, Condensed matter.

[47]  J. Desclaux A multiconfiguration relativistic DIRAC-FOCK program , 1984 .

[48]  F. Grandjean,et al.  Mössbauer spectroscopy applied to inorganic chemistry , 1984 .

[49]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[50]  A. Trautwein,et al.  Electronic charge and spin distribution in some iron halides from the interpretation of the 57 Fe and 129 I hyperfine interactions , 1979 .

[51]  W. Nieuwpoort,et al.  CALIBRATION CONSTANT FOR FE-57 MOSSBAUER ISOMER-SHIFTS DERIVED FROM ABINITIO SELF-CONSISTENT-FIELD CALCULATIONS ON OCTAHEDRAL FEF6 AND FE(CN)6 CLUSTERS , 1978 .

[52]  J. Desclaux,et al.  Limitation of semi-empirical mo-calculations in deriving charge densities ρ(0) in iron-oxygen compounds , 1977 .

[53]  J. Desclaux Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120 , 1973 .

[54]  K. Ruedenberg,et al.  The Origin of Binding and Antibinding in the Hydrogen Molecule-lon , 1970 .

[55]  G. Shenoy,et al.  CHANGE IN NUCLEAR RADIUS UPON EXCITATION FOR $sup 119$Sn, $sup 121$Sb, $sup 125$Te, $sup 127$ $sup 129$I, AND $sup 129$Xe FROM MOESSBAUER ISOMER SHIFTS. , 1969 .