Room-temperature high-order Stokes and anti-Stokes generation in orthorhombic ferroelectric-ferroelastic K3Nb3O6(BO3)2 crystal

Multiple stimulated Raman scattering (SRS) in orthorhombic K3Nb3O6(BO3)2 crystal was observed under picosecond Nd3+:Y3Al5O12-laser excitation. All registered Stokes and anti-Stokes generation components in the visible and near-IR were identified and attributed to the SRS-active vibration modes ωSRS–1 ≈ 324 cm–1 and ωSRS–2 ≈ 648 cm–1 of octahedral units of studied crystal. Possible manifestation of resonance interaction between these vibrations with divisible frequencies is briefly discussed also. The first Stokes steady-state Raman gain coefficients in the one-micron spectral region were estimated as well. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Hans Joachim Eichler,et al.  Monoclinic bismuth triborate BiB3O6 – a new efficient χ(2)+χ(3)-nonlinear crystal: multiple stimulated Raman scattering and self-sum-frequency lasing effects , 2002 .

[2]  P. Becker,et al.  Crystal growth of ferroelectric and ferroelastic K3[Nb3O6|(BO3)2] and crystal structure of the room temperature modification , 1996 .

[3]  Petra Becker,et al.  Borate Materials in Nonlinear Optics , 1998 .

[4]  I. P. Kaminow,et al.  Temperature Dependence of Raman and Rayleigh Scattering in LiNbO 3 and LiTaO 3 , 1968 .

[5]  James C. Barnes,et al.  High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals , 2000 .

[6]  V. Lemos,et al.  Pressure dependence of the Raman spectra of LiNbO3 and LiTaO3 , 1984 .

[7]  Fernando Agulló-Rueda,et al.  Raman active phonons of RFe3(BO3)4, R=La or Nd, single crystals , 1997 .

[8]  N. Sheppard,et al.  The infra-red spectrum and structure of boric acid , 1955 .

[9]  A. Kaminskii Nonlinear-laser effects in χ(3)-and χ(2)-active organic single crystals , 2003 .

[10]  A. Kahn-Harari,et al.  Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB) , 1997 .

[11]  Gerard Aka,et al.  Ytterbium-doped Ca 4 GdO(BO 3 ) 3 : an efficient infrared laser and self-frequency doubling crystal , 1999 .

[12]  A. Kaminskii Modern developments in the physics of crystalline laser materials , 2003 .

[13]  P. Becker,et al.  Top-seeded growth of bismuth triborate, BiB3O6 , 1999 .

[14]  F. Balembois,et al.  Generation of 90-fs pulse from a modelocked diode-pumped Yb3+:Ca4GdO(BO3)3 laser , 2018 .

[15]  A. A. Pavlyuk,et al.  High-order stimulated Raman scattering combined with second harmonic generation in [χ(2)+χ(3)]-nonlinear LaBGeO5, β'-Gd2(MoO4)3 and Ca4Gd(BO3)3O laser host crystals under picosecond excitation , 1998 .

[16]  J. C. Decius,et al.  Infrared Absorption of Lanthanum, Scandium, and Indium Borate and the Force Constants of Borate Ion , 1956 .

[17]  G. Pasmanik Stimulated Raman scattering augments DPSS lasers , 1999 .

[18]  A. A. Kaminskii,et al.  Pure and Nd3+-, Pr3+-Ion Doped Trigonal Acentric LaBGeO5 Single Crystals Nonlinear Optical Properties, Raman Scattering, Spectroscopy, Crystal-Field Analysis, and Simulated Emission of Their Activators , 1991 .

[19]  R. Loudon,et al.  Dielectric Properties and Optical Phonons in LiNb O 3 , 1967 .

[20]  W. Ryba-Romanowski,et al.  Spectroscopic investigation of Nd3+ and Yb3+ in Ca4GdO(BO3)3 crystals , 2000 .

[21]  Yaochun Shen Principles of nonlinear optics , 1984 .