A quantum computing primer for operator theorists

This is an exposition of some of the aspects of quantum computation and quantum information that have connections with operator theory. After a brief introduction, we discuss quantum algorithms. We outline basic properties of quantum channels, or equivalently, completely positive trace preserving maps. The main theorems for quantum error detection and correction are presented and we conclude with a description of a particular passive method of quantum error correction.

[1]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[2]  Isometric Dilations of Non-Commuting Finite Rank n-Tuples , 2001, Canadian Journal of Mathematics.

[3]  Seth Lloyd,et al.  Topological protection and quantum noiseless subsystems. , 2003, Physical review letters.

[4]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  D. Leung,et al.  Choi’s proof as a recipe for quantum process tomography , 2003 .

[6]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[7]  C. King The capacity of the quantum depolarizing channel , 2003, IEEE Trans. Inf. Theory.

[8]  George Johnson A Shortcut Through Time: The Path to the Quantum Computer , 2003 .

[9]  Quantum error correction and Young tableaux , 2004 .

[10]  竹崎 正道 Theory of operator algebras , 2002 .

[11]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[13]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Lorenza Viola,et al.  Constructing Qubits in Physical Systems , 2001 .

[15]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[16]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[17]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[18]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[19]  Alvaro Arias,et al.  Fixed points of quantum operations , 2002 .

[20]  S. Wassermann,et al.  C*‐ALGEBRAS BY EXAMPLE (Fields Institute Monographs 6) , 1998 .

[21]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[22]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[23]  Noiseless Subsystems for Collective Rotation Channels in Quantum Information Theory , 2004, math/0402105.

[24]  K. Davidson C*-algebras by example , 1996 .

[25]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  D. Kribs QUANTUM CHANNELS, WAVELETS, DILATIONS AND REPRESENTATIONS OF $\mathcal{O}_{n}$ , 2003, Proceedings of the Edinburgh Mathematical Society.

[27]  Michael Batty,et al.  Quantum algorithms in group theory , 2003 .

[28]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[29]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[30]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[31]  K. Kraus,et al.  States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .

[32]  Andreas J. Winter Quantum and classical message identification via quantum channels , 2005, Quantum Inf. Comput..

[33]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[34]  David W. Kribs Quantum Channels, Wavelets, Dilations and Representations of $O_n$ , 2003 .

[35]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[36]  M. Junge,et al.  Universal collective rotation channels and quantum error correction , 2004, math/0405032.

[37]  R. Feynman Simulating physics with computers , 1999 .

[38]  Paul Busch,et al.  Lüders theorem for unsharp quantum measurements , 1998, 1304.0054.

[39]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[40]  T. Rudolph,et al.  Decoherence-full subsystems and the cryptographic power of a private shared reference frame , 2004, quant-ph/0403161.

[41]  Michele Mosca,et al.  Exact quantum Fourier transforms and discrete logarithm algorithms , 2003 .

[42]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[43]  W. Arveson An Invitation To C*-Algebras , 1976 .

[44]  Raymond Laflamme,et al.  Noiseless Subsystems and the Structure of the Commutant in Quantum Error Correction , 2003, Quantum Inf. Process..

[45]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[46]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[47]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[48]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[49]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[50]  Michael Brooks,et al.  Quantum Computing and Communications , 1999, Springer London.

[51]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[52]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[53]  A. Holevo Problems in the mathematical theory of quantum communication channels , 1977 .

[54]  K. Kraus General state changes in quantum theory , 1971 .

[55]  H. S. Allen The Quantum Theory , 1928, Nature.

[56]  M. Ruskai,et al.  Entanglement Breaking Channels , 2003, quant-ph/0302031.

[57]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[58]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[59]  John Watrous,et al.  Quantum algorithms for solvable groups , 2000, STOC '01.

[60]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[61]  F. Verstraete,et al.  On quantum channels , 2002, quant-ph/0202124.

[62]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[63]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[64]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[65]  J. I. Cirac,et al.  Enforcing Coherent Evolution in Dissipative Quantum Dynamics , 1996, Science.

[66]  Exploring noiseless subsystems via nuclear magnetic resonance , 2002, quant-ph/0210057.

[67]  P. Shor Equivalence of Additivity Questions in Quantum Information Theory , 2003, quant-ph/0305035.

[68]  Institute for Scientific Interchange Foundation,et al.  Stabilizing Quantum Information , 1999 .

[69]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[70]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[71]  W. Stinespring Positive functions on *-algebras , 1955 .

[72]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[73]  T. Rudolph,et al.  Classical and quantum communication without a shared reference frame. , 2003, Physical review letters.

[74]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[75]  R. Laflamme,et al.  Robust polarization-based quantum key distribution over a collective-noise channel. , 2003, Physical review letters.

[76]  Michael A Nielsen Rules for a complex quantum world. , 2002, Scientific American.

[77]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[78]  A. Holevo Coding Theorems for Quantum Channels , 1999 .

[79]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[80]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[81]  Samuel J. Lomonaco,et al.  Quantum Computation: A Grand Mathematical Challenge for the Twenty-First Century and the Millennium: American Mathematical Challenge Society, Short Course, January 17-18, 2000, Washington, DC , 2002 .

[82]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[83]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[84]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[85]  Laflamme,et al.  Quantum Logical Operations on Encoded Qubits. , 1996, Physical review letters.

[86]  C. cohen-tannoudji,et al.  Quantum Mechanics: , 2020, Fundamentals of Physics II.

[87]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[88]  V. Paulsen Completely bounded maps and dilations , 1987 .

[89]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[90]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[91]  S. Filippo Quantum computation using decoherence-free states of the physical operator algebra , 1999, quant-ph/9910005.

[92]  Debbie W. Leung,et al.  Classical capacity of a noiseless quantum channel assisted by noisy entanglement , 2001, Quantum Inf. Comput..